INSTALLATION MANUAL
COMMUNICATING WITH US

If you need more information, support or other assistance from us, do not hesitate to contact us:

SKIPPER Electronics AS
P. O. Box 151, Manglerud
0612 Oslo
Norway

Phone: (+47) 23 30 22 70
E-mail: support@skipper.no

SOFTWARE UPDATES AND TECHNICAL SUPPORT

Find us on the internet: www.skipper.no

YOUR FEEDBACK IS APPRECIATED

If you find errors, misspellings or poorly explained sections in this document, we are happy to receive your feedback at:

support@skipper.no
CONTENTS

INTRODUCTION .. 6
The DL1-Multi Doppler speed log system ... 6
Overview DL1 .. 7
Connectors supplied with JB70D1 ... 8
Items supplied locally .. 9
What to do ... 9

CHAPTER 1: HARDWARE MOUNTING .. 10
Placement of the speed log sensor and bottom installation ... 10
Sensor orientation .. 12
Documentation of Installation. .. 13
Placement of the electronic unit (JB70D1-XX) ... 14
Placement of the control unit (CD402CU-XX) .. 15
Placement of repeaters CD401MR-XX ... 15

CHAPTER 2: WIRING ... 16
Electronic unit .. 16
Connecting sensor to Electronic unit .. 17
the junction box JB12, and cable extensions ... 18
CD402 Control unit to Electronic unit .. 19
 Cable diagram CD402XX-SC .. 19
Connecting dimmer units to CD402 .. 20
Auxiliary input and outputs ... 22
Analog output .. 22

CHAPTER 3: SETUP LAN COMMUNICATION .. 24
LAN setup ... 25

CHAPTER 4: WEB SETUP OF SPEEDLOG ... 26
CD402CU communication with JB70DL ... 26
JB70DL communication with CD402CU ... 27
JB70D1 NMEA setup ... 28
JB70D1 AUX setup ... 29
CD402 Control Unit Self Test ... 30
Running in demo mode .. 31

CHAPTER 5: SEA TEST AND CALIBRATION .. 32

CHAPTER 6: SERVICE SW DIAGNOSTICS ... 35

CHAPTER 7: TROUBLE SHOOTING ... 36
Control Unit CD402 Trouble shooting .. 36
Electronic Unit JB70D1 Diagnostics .. 36

CHAPTER 8: SPECIFICATIONS .. 38

APPENDIX 1: MISC DRAWINGS ... 40
JB70D1 exploded view ... 44
Alternative NMEAcommunication CD402 to JB70D1 .. 45

APPENDIX 2: OPTIONAL FEATURES .. 46
Single beam operation ... 46

WARRANTY AND UTILIZATION ... 47
Terminology

Terms used in this manual

Units

Unless otherwise stated, all values shown on the display are as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>Knots</td>
</tr>
<tr>
<td>Temp</td>
<td>°C</td>
</tr>
<tr>
<td>Tilt</td>
<td>Degrees</td>
</tr>
<tr>
<td>Dist</td>
<td>Nautical Miles (NM)</td>
</tr>
</tbody>
</table>

Abbreviations

In addition, the following symbols are used

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>Water Track</td>
</tr>
<tr>
<td>CAT6</td>
<td>Category 6 cable as defined in the standard</td>
</tr>
<tr>
<td>INS</td>
<td>Integrated Navigational System</td>
</tr>
<tr>
<td>MED</td>
<td>Marine Equipment Directive</td>
</tr>
<tr>
<td>VBW</td>
<td>Dual ground/Water speed</td>
</tr>
<tr>
<td>VHW</td>
<td>Heading & Water speed</td>
</tr>
<tr>
<td>NMEA</td>
<td>National Marine Electronics Association</td>
</tr>
<tr>
<td>NAUT</td>
<td>Class notation for enhanced nautical safety</td>
</tr>
</tbody>
</table>
INTRODUCTION

THE DL1-MULTI DOPPLER SPEED LOG SYSTEM
The DL1-Multi single axis Doppler speed log system is a vessel mounted system that measures speed in one axis (longitudinal) through the water. The system fulfils all class and type regulations based on MED B (wheelmark).

The system requires no external inputs, however adding inputs from other navigational systems enhances the functionality and allows comprehensive quality control of the data.

The system comprises of 3 units;

1. **The control unit** – The system requires a small control unit (CD402CU-XX) to display and set up the required parameters. All setup parameters are also available by connecting to the electronic units web page via a LAN cable.

2. **The electronic unit** – This unit (JB70D1-XX) comprises of a processor/IO board and a power supply. It is packaged in a compact single euro cabinet. This units electronics enable the user to interface to both modern and older navigation systems with all the expected connectivity. The unit has a built-in web server, allowing the system to be fully integrated into existing navigation systems (extra approvals may apply).

3. **The sensor** – The sensor (DL1SX-XX) contains 2 acoustic elements and a fully programmable transceiver unit, allowing the system to adapt itself to the conditions and requirements. In addition, the sensor contains a temperature sensor for internal compensation and quality control.

4. The sensor is installed into a sea valve or tank welded into the hull.
The sensor may be installed into sea valve for single bottom hulls (as shown) or sea valve for double bottom hulls.

SKIPPER Electronics supply a variety of sensor installation options for new buildings and retrofit. Please contact SKIPPER Electronics for information.
CONNECTORS SUPPLIED WITH JB70D1

ZZN-01126 Relief Housing, 3 pole snap-on. WAGO: 232-633

ZZN-01136 Plug, Female 3 pole with locking levers, 231-303/037-000

ZZN-01120 Connector Female w ejectors 6x2 pole, black WAGO 713-1106/037-000

ZZN-01122 Strain relief plate, 6x2 pole, width 11 mm WAGO 713-126

ZZN-0114 Plug, Female 2 pole, 231-302_032-000

ZZN-01121 Connector, Female w ejectors 12x2 pole, black WAGO 713-1112/037-000

ZZN-01122 Strain relief plate, 12x2 pole, width 39 mm 713-128
ITEMS SUPPLIED LOCALLY

LAN Cable from Electronic unit to Operator unit
Type CAT6
Max 100m

Cable from JB12 to Electronic unit
Cable spec:
See wiring diagram

The sensor may be installed into sea valve for single bottom hulls (as shown) or sea valve for double bottom hulls.
SKIPPER Electronics supply a variety of sensor installation options for new buildings and retrofit. Please contact SKIPPER Electronics for information.

WHAT TO DO
Before receiving the system, some time must be taken finding the best sensor location, a suitable mounting fixture and wiring design of the system on the vessel. The manufacturer can give advice if required.
CHAPTER 1: HARDWARE MOUNTING

PLACEMENT OF THE SPEED LOG SENSOR AND BOTTOM INSTALLATION
When placing the speed log sensor, consider the following moments:

- The DL1 doppler sensor measure speed of water in a distance 0,5-3m away from sensor. 2 acoustic signals, one pointing 30deg forward and the other pointing 30 deg aft.
- The sensor is installed into a sea valve or tank welded into the hull.
- It is necessary to select a part of the hull that is submerged and free from turbulence and aeration under all load and speed conditions, and to avoid positions where air is trapped in heavy weather.

The generally best placement on larger vessels is in the front region of the vessel just behind the bulbous bow (see area A on fig). This area is generally designed such that the bubbles are pushed to either side of the bulb, leaving a clear area under the bulb and just behind.

- Do not mount transducers aft of bow thruster outlets, or aft of other hull installations (such as outlets, vents or other protruding details) that may create aeration or turbulence.
- Welding seams in this area should be smoothed and rounded off in order not to create turbulence or aeration and maintain a laminar waterflow at all speed ranges of the vessel.
- Select an area that is acoustically quiet. The system operates at frequencies between 700 kHz and 740 kHz.

- If the bottom is sloped a housing (blister) should be constructed. It is recommended to allow a flat area of at least 30 cm in front and behind of the sensor and form the bed as a tear drop.

![Figure showing placement of a sensor with the individual beams pointing fore and aft.](image)

![Figure showing the generally best sensor placement in the front region.](image)

![Recommended mounting area](image)
A sea valve is highly recommended over a tank installation, as it is possible to service the sensor (clean or replace) without docking the vessel.

The best place for sensor installation is in a dry and accessible area like bow thruster room, just in front of the fore bow thruster, as deep as possible on the hull.

Even though sensor is approved to be installed in wet areas like ballast tank it is not recommended if installed in a wet area special care to maintenance and maintenance access should be taken. A dry void space is recommended. A junction box for sensor cable should be mounted close to sensor allowing sensor change.

The sensor cable (green) is waterproof and carries digital signals to and from the sensor and power to the sensor. It must pass through the outer hull using a double water seal. This is included in the bronze tube in sea valves, or in the tank and stuffing tube. The cable is 11 mm in outer diameter with a bending radius of 25 mm. The cable can be cut if required.

Please refer to separate manuals for bottom parts.

Manuals are available from the SKIPPER web site www.skipper.no
SENSOR ORIENTATION

Tank mountings have an orientation (an arrow that must point forward) see next page. **Single axis speed logs do not have the possibility to correct heading error electronically and must therefore be mounted in line with the hull (within 2 degrees).**

Orientation in Sea Valve
The sensor is typically mounted after the vessel is in water. Care must be taken that the ahead mark on the bottom installation is correct (seen from the inside by the flat edge being on port side).

Orientation in Tank
When welding tank to hull care must be taken that the ahead mark on the bottom installation is correct. It is not possible to adjust orientation after vessel is afloat.
DOCUMENTATION OF INSTALLATION.

Before vessel is launched from dry-dock it is important to make documentation of hull installation. By providing the pictures in below registration card it may help us understand how the bottom equipment is installed. It is very expensive and time consuming to provide these pictures after vessel is launched.

This document may also be downloaded from the SKIPPER web page.

A copy of the document with pictures should be sent to warranty@skipper.no

Installation test procedure

Warranty registration card

<table>
<thead>
<tr>
<th>Consist of:</th>
<th>Part number</th>
<th>Serial number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display unit:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transceiver/Electronic unit:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom parts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeater(s):</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Access to sensor:

- Through cofferdam, ballast tank, fore peak tank, dry compartment, etc.

Name of vessel:

SKIPPER registration no:

Owner name:

Owner address:

Before placing vessel in water (Estimated duration 0.5 hours):

1. Document positioning of the bottom

2. Document grinding of welding seams

3. Position from forward

4. Document inside mounting of bottom equipment (show tubing and tank or sea valve)

- Check area around sensor is smooth, and no tape or paint on sensor.
PLACEMENT OF THE ELECTRONIC UNIT (JB70D1-XX)

All parts of the system are connected to the electronic unit.
Power, Control unit, Sensor, all I/O signals (alarm, NMEA, puls out etc)

Access to Electronic unit only needed for service.
Placement is typically in or near the bridge where the interfaced systems are available, but no nearer than 0.3 m to the GYRO heading sensor.

1. Install a mounting DIN rail EN 50022 (if not existing) on the wall.
2. Mount the JB70D1-XX on the rail. (Be sure that the unit is properly mounted, see detail A)
3. Mark the 4 centerpoints for the drill in the wall (A).
4. NB! The drilling holes diam. depends on thickness and material of the wall.
5. Use self tapping screws ST3,5 DIN 7981-C pozidrive (A). (The screw length depends on the wall thickness).
PLACEMENT OF THE CONTROL UNIT (CD402CU-XX)

If required, the control unit is placed on the bridge. Some standards require some operations of the unit to be available from 'standing position', and in this case the unit must be near the steering position. However, it is also possible to control some of these settings from multi-repeaters with 2-way communication (ex: CD401MR-SB) In which case, the Control unit can be placed on, for example, the navigation table.

PLACEMENT OF REPEATERS CD401MR-XX

Repeaters are typically installed on the overhead console and/or the bridge wings. These can be routed using NMEA signals. These require a local +24 V DC supply.

Same dimensions as CD402.
CHAPTER 2: WIRING

Electronic Unit
All parts of the system are connected to the electronic unit. The electronic unit has pluggable spring loaded connectors, as well as an RJ45 LAN interface. NMEA (4 output, 1 input ports), pulse, AUX (control signals) and optional analogue output signals can be connected.

The electronic unit requires either 24 V DC or 115 - 230 V AC (50 - 60 Hz), max 60 W. Both can be connected simultaneously. If required, a separate AUX 24 V supply can also be connected.

The supplies are not internally isolated and ground will be connected to chassis at a single point (The screw between the DC connectors), cables to and from the cabinet should be grounded to the grounding points on the chasis using a faston spade (type AMP - 140814-1 - TAB, FASTON, Example mating part 5-160447-5 - CRIMP RECEPTACLE)

The JB70D1-XX does not contain a physical ON/OFF switch (only software in sleep mode) and should be connected to a fused circuit breaker.

220V AC. 0,5A
115V AC. 1A
24V DC. 3A
CONNECTING SENSOR TO ELECTRONIC UNIT

The sensor is provided with a 40 m cable. This can be cut, or extended (see wiring diagram for cable spec). The individual internal wires can be spliced or connected using a JB12 junction box.

<table>
<thead>
<tr>
<th>Colour code</th>
<th>Signal/Sensor</th>
<th>Pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>+24 V DC</td>
<td>Individually screened pair</td>
</tr>
<tr>
<td>Black w/ White</td>
<td>0 V</td>
<td>Individually screened pair</td>
</tr>
<tr>
<td>Orange</td>
<td>TX+</td>
<td>Individually screened pair</td>
</tr>
<tr>
<td>White w/ Orange</td>
<td>TX-</td>
<td>Individually screened pair</td>
</tr>
<tr>
<td>Black</td>
<td>RX+</td>
<td>Individually screened pair</td>
</tr>
<tr>
<td>Yellow w/ Black</td>
<td>RX-</td>
<td>Individually screened pair</td>
</tr>
<tr>
<td>Yellow w/Red</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>Orange w/Red</td>
<td>Not used</td>
<td></td>
</tr>
</tbody>
</table>

SENSOR CABLE PLUG

Cables should be connected as shown, leaving approximately 3 cm of tail. They should be stripped with 6-7 mm of metal showing and these should be connected as in the diagram above. A small screwdriver with blade size approx 3.5 mm, can be used, although WAGO part no 210-719 is ideal for this use.

In a ground stud on the edge of the cabinet. The outer insulation should be cable tied to the plastic handle of the connector, and securely anchored nearby. The plugs, when refitted, must be installed such that their clips are fully in the up position.

If yard cables are too thick or heavy to clamp, anchor the outer insulation nearby, and feed the inner cables to the connector.

If the connector is missing, lost or broken, replacements are available from Skipper (PN ZZN-01121) or Wago (part no. 713-1112/037-000)

GROUNDING

A general rule is that cable shields should be grounded in one end of the cable only. The DL1 sensor contains a grounding point internally and this is connected to the outer shield of the cable. This cable does not need to be grounded at the dry end.

WAGO part no 210-719
THE JUNCTION BOX JB12, AND CABLE EXTENSIONS

<table>
<thead>
<tr>
<th>Sensor cable</th>
<th>Extension cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>Description (seen from JB70XX)</td>
</tr>
<tr>
<td>White</td>
<td>+18 - 36 V DC</td>
</tr>
<tr>
<td>Black</td>
<td>0 V</td>
</tr>
<tr>
<td>Orange</td>
<td>RX+</td>
</tr>
<tr>
<td>White</td>
<td>RX-</td>
</tr>
<tr>
<td>Black</td>
<td>TX+</td>
</tr>
<tr>
<td>Yellow</td>
<td>TX-</td>
</tr>
<tr>
<td>Orange</td>
<td>AUX+</td>
</tr>
<tr>
<td>Yellow</td>
<td>AUX-</td>
</tr>
</tbody>
</table>

All individual screens to be grounded together and passed into the outer screen of the CAT5e cable.

Connect the sensor cable to the Extension cable as shown. All grounds are collected together and connected to the outer ground of the Extension cable. The grounds should not be connected to a local ground. If there is no room for the JB12 housing, the cables can be carefully spliced together. Both cables can be cut.
CD402 CONTROL UNIT TO ELECTRONIC UNIT

The CD402XX-SC is powered by local 24VDC on pin 1 and 2 on Wago connector. Connection to Electronic with LAN connector directly or via LAN switch.

CABLE DIAGRAM CD402XX-SC

<table>
<thead>
<tr>
<th>Signals</th>
<th>Pin number on plugable WAGO back connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24 V</td>
<td>1</td>
</tr>
<tr>
<td>0 V</td>
<td>2</td>
</tr>
<tr>
<td>NMEA IN A</td>
<td>3</td>
</tr>
<tr>
<td>NMEA IN B</td>
<td>4</td>
</tr>
<tr>
<td>DIM UP A</td>
<td>5</td>
</tr>
<tr>
<td>DIM UP B</td>
<td>6</td>
</tr>
<tr>
<td>DIM DWN A</td>
<td>7</td>
</tr>
<tr>
<td>DIM DWN B</td>
<td>8</td>
</tr>
<tr>
<td>NMEA2 IN A *</td>
<td>9</td>
</tr>
<tr>
<td>NMEA2 IN B *</td>
<td>10</td>
</tr>
<tr>
<td>NMEA1 OUT A</td>
<td>11</td>
</tr>
<tr>
<td>NMEA1 OUT B</td>
<td>12</td>
</tr>
</tbody>
</table>

Note: NMEA in/out is not in use on LAN set up.

Alternative 1
Connect CD402 Control unit to JB70D1 directly.

Alternative 2
Connect CD402 Control unit to JB70D1 via LAN switch.
CONNECTING DIMMER UNITS TO CD402

IR30 DIM
This is a simple unit with make or break double push buttons, used for pulse dimming. Holding down the buttons will ramp the dimming. An external DC voltage is required.

The IR30 dimmer may be connected directly to AUX in of JB70D1. DIM Up on CN1 16/18, Dim Dn on CN2 06/08.

| Ext voltage value not critical. 1 K resistors inside CD401 on DIM Up A/B lines |
| DC + | DIM Up A (White) | DIM Down A (Brown) |
| DC - | DIM Up B (Black) | DIM Down B (Violet) |

IR31 DIM
The CD402 may be dimmed by NMEA DDC commands. The DDC command is input to the NMEA input of JB70D1 Electronic unit.
The IR31 taking up to 2 NMEA lines and multiplexing onto it a DDC or Proprietary message each time a button is pushed
Auto mode with internal or external light sensor the unit can be made to send messages when the correct light conditions are reached (User adjustable)
IEC61162-1 NMEA CONNECTION
The JB70D1-XX system has 1 NMEA isolated input and 4 output ports driven separately from a single com port, each capable of delivering 20mA. These are marked in blue and can be programmed to give out a number of messages. In addition, the LAN port can be used to provide the same formats using the IEC61162-450 standard. However, it should be noted that this port will normally also send out proprietry messages with information to the CD401CU-XX control unit. Approved messages are sent at a 1 second interval, and are marked with the ‘VD’ identifier. Data is sent at 4800 baud, 8 data bits, 1 stop bit. The inputs require 2mA when the voltage is limited to 2V. Generally the inputs use 2.5 mA if available.

NMEA In:
CN1 pin 2 and 4

NMEA Out1:
CN1 pin 6 and 8

NMEA Out2
CN1 pin 10 and 12

NMEA Out3
CN2 pin 1 and 3

NMEA Out 4
CN2 pin 2 and 4
Auxiliary Input and Outputs.

Auxiliary input and outputs are electrically isolated and require a small voltage on the input to work. The labelling of the system is set up for the most common wiring configuration. All the pulse inputs and outputs are programmable and can be configured in the web menus to perform a number of tasks as shown below.

Aux in (marked ALRM RST IN on CN1 pin 16 and 18) can be switched to the following options:
- Dimming Up
- Dimming Down
- Forward reverse (for 2 directional systems) To activate this go to the DL1 web page.

There are 3 Aux Outputs:
- Pulse out (default Aux Out1)
- Power failure alarm (default Aux Out2)
- Speed warning, min/max range set by the user (default Aux Out3)

Analog Output

The DL1-Multi has outputs for analog speed on connector CN2.
- I OUT for 4-20mA on CN2 pin 11
- V OUT for 0-10V on CN2 pin 09.

These use a common ground and provide voltage. The current output will be max 24V.
CHAPTER 3: SETUP LAN COMMUNICATION

Both the Control unit and the Electronic unit have unique IP addresses, and system identification numbers. These are adjustable via the web page, but the default values are shown on the serial number labels. If changed it is recommended to make a label with the new address.

Startup requires the following steps:

Connect the units together and use SKIPPER service software to find the relevant settings, alternatively address individual units using their IP addresses from a web browser.

If no switch is available, connect directly to each unit and use its web page to setup. Multirepeaters can be set up directly from the screen.

Note! If no DHCP server on network then change your PC TCP IP settings to “fixed IP”.

SETUP USING SKIPPER SERVICE SW

For setup of IP addresses, Id and port please use SKIPPER service software. Available as download from:

http://www.skipper-service.no/skipdoc/data///Software//SkipperServiceSoftware/SetupProjectServiceSoftware.msi

Start “Com Setup”
Press “Find multi systems”
The software will search for SKIPPER products and present a list with settings. A table with all the detected system will be generated, and from this table it is possible to configure the units. Each Electronic unit JB70D1-SA must be paired with a control unit (CD402CU-SC) This is done by adding the identification of the JB70D1 unit to the Control units pair field.
If more than one control unit is to be used on a single Electronic unit then the field Pair field on the electronic unit (JB70D1) can be left blank. Otherwise enter the ID for the paired control unit.
Note. All units that are to detect each other must be in the same Group. This is by default NAVD.

LAN SETUP
Turn on the electronic unit and control unit (if attached). The electronic unit will attempt to self-connect, and go to the system setup screen. If the control unit is not available or does not work, (possibly IP clash) it will show a single ‘ERROR’ on screen, in this case connect a LAN cable to a RJ45 connector.
Go to web page (default IP address 172.16.1.104 for JB70D1 or 172.16.1.103 for CD402CU, or to the labelled IP address. From here you have access to the system setup page. If you cannot make contact by the above methods, use the SKIPPER service application (available from the web site, select the correct interface unit, and follow the instructions.
In accordance with the IEC61162-450 LAN interface standard, the System Unique identifier (default VD01XX where XX is the serial number) and Group (default NAVD) can be adjusted. The LAN works at 100BaseT speeds. A typical payload will be 2-7 kB/s

```
UdPbC0:s:VD0103,n:23*2A\$VDVBW,10.1,,A,,,V,,V,,C*58<CR><LF>
```

CD401CU shows error if it does not detect the JB70D1-XX unit
CHAPTER 4: WEB SETUP OF SPEEDLOG

CD402CU COMMUNICATION WITH JB70DL
Setup can be performed from web browser (preferably chrome or mozilla) available by connecting a PC to the LAN port using a tLAN cable.
WEB browser for CD402 is just for setup of communication to the JB70D1 unit. All other parameters are on JB70 web browser or directly on CD402.
In address line type IP adress of CD402CU unit.
Select “system configuration”.

<table>
<thead>
<tr>
<th>Serial No: 999999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network connection:</td>
</tr>
<tr>
<td>IP address: 010.031.001.020</td>
</tr>
<tr>
<td>Subnet mask: 255.255.000.000</td>
</tr>
<tr>
<td>IP address of default router: 010.031.001.001</td>
</tr>
<tr>
<td>MAC Address: 50:c9:af-33-6-66</td>
</tr>
<tr>
<td>To change enter password in Maintenance page.</td>
</tr>
<tr>
<td>Multicast:</td>
</tr>
<tr>
<td>System ID (SFI): 0204</td>
</tr>
<tr>
<td>Group: NAVD 239.192.0.4</td>
</tr>
<tr>
<td>JB70 ID: 0201</td>
</tr>
<tr>
<td>To change enter password in Maintenance page.</td>
</tr>
<tr>
<td>CD402 CU connection:</td>
</tr>
</tbody>
</table>
| Input and output port:
 - None
 - NMEA
 - Ethernet (UDP) |
| **NMEA baudrate:** |
| NMEA: 4800 |

To change enter password in Maintenance page.
JB70DL COMMUNICATION WITH CD402CU
In address line type IP address of JB70DL unit.
Select “system configuration”.

<table>
<thead>
<tr>
<th>Network connection:</th>
<th>Serial No</th>
<th>214001</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address:</td>
<td>10.0.31.001.912</td>
<td></td>
</tr>
<tr>
<td>Subnet mask:</td>
<td>255.255.000.000</td>
<td></td>
</tr>
<tr>
<td>IP address of default router:</td>
<td>10.0.31.001.999</td>
<td></td>
</tr>
<tr>
<td>MAC Address:</td>
<td>50-c9-a0-33-6-65</td>
<td></td>
</tr>
</tbody>
</table>

To change enter password in Maintenance page.

<table>
<thead>
<tr>
<th>Multicast:</th>
<th>System ID (SFI)</th>
<th>0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>NAVD</td>
<td>239.192.0.4</td>
</tr>
<tr>
<td>CU ID</td>
<td></td>
<td>0204</td>
</tr>
</tbody>
</table>

To change enter password in Maintenance page.

<table>
<thead>
<tr>
<th>CD402 CU connection:</th>
<th>Input port:</th>
<th>None, NMEA IN, Ethernet (UDP/IP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output port:</td>
<td>None, Sensor OUT, NMEA OUT, Ethernet (UDP/IP)</td>
<td></td>
</tr>
</tbody>
</table>
JB70D1 NMEA SETUP

NMEA inputs

The following inputs may be used to enhance the DL1:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>GPVTG, GPZDA, GPGGA</td>
</tr>
<tr>
<td>TRIP</td>
<td>Trip reset command</td>
</tr>
<tr>
<td>DDC</td>
<td>Display Dimming control</td>
</tr>
</tbody>
</table>

NMEA outputs

<table>
<thead>
<tr>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBW</td>
<td>$VDVBW,x.x,A,,V,,V*hh<CR><LF></td>
</tr>
<tr>
<td>VLW</td>
<td>$VDVLW,x.x,N,y,N,,N*hh<CR><LF></td>
</tr>
<tr>
<td>MTW</td>
<td>$VDMTW,x.x,C, *hh<CR><LF></td>
</tr>
<tr>
<td>VHW</td>
<td>$VDVHW,,, x.x,N,x.x,K *hh<CR><LF></td>
</tr>
<tr>
<td>XDR</td>
<td>$VDXDR,A,x.x,D,SPPPD *hh<CR><LF></td>
</tr>
</tbody>
</table>

NMEA setup is found under “System configuration”
InMan DL1-Multi Single Axis Doppler Speed Log System

JB70D1 AUX SETUP

AUX setup is found under “System configuration”

Aux In options:
Dim up (default)
Dim down (default)
Reverse (forward heading direction for ferries)

Aux Out options:
Pulse out (default)
Power failure (alarm)
Speed warning.
Fitness (alarm)
CD402 Control Unit Self Test

The user can run an internal system test, run individual hardware tests and report as pass or fail. The tests are designed to check the functionality of the input and output. Some require a loop from an input to an output.

Test 0: Check LEDs on CD401CU-XX control unit.
Test 1: Check internal memory.
Test 2: Check two way communication to the sensor.
Test 3: Send out a full length NMEA message on NMEA outputs.
Test 4: Send out a full length NMEA message on sensor outputs.
Test 5: Used only for manufacture test
Test 6: Used only for manufacture test
Test 7: Used only for manufacture test
Test 8: Used only for manufacture test
Test 9: Used only for manufacture test.
Test 10: Show Raw data from the sensor, and Quality factor

Quality factor is a value from 0 to 8 showing how strong the signal is relative to the noise. If the installation is poor, the noise may rise reducing this number, also if the return signal is weak, this value will also be low. Each unit is 3dB signal to noise ratio. The system is suspect with values below 3.
RUNNING IN DEMO MODE

Once all parts are installed, the system can be made to run simulations of real situations. These are found in the demo setup.

The system has 4 demos:

Demo 1: Slowly ramps a speed up and down. This allows the user to monitor speed outputs, to set and trigger alarm (which can then be reset).

Demo 2: Fixes a speed on screen. This can be preset in the web page.

Demo 3: Transmits a fixed speed of longitudinal 5 kn and transversal 1 kn.

Demo 4: Simulates a speed on the sensor by pinging at the equivalent Doppler frequency - select the desired speed and press “SET”.

All these demo/simulations will cause an ‘S’ to flash in the corner of the CD401CU-XX control unit.
CHAPTER 5: SEA TEST AND CALIBRATION

A speed log will require calibration of speed after installation. There are 2 types of calibration procedure:

1. Auto Calibration

Auto Calibration is designed to ignore water current effects. The procedure requires the vessel to sail a fixed length track at a constant speed. To remove the current and wind effects, the same track should then be sailed in the opposite direction at the same speed.

The average of these tracks will be used to calculate the speed difference between the real speed (measured using the actual distance and the time it took), and the measured speed (using distance from the sensor and the time it took).

This procedure must be performed at least once and then other speeds checked with the GPS or manual calibration.

A calibration procedure may be performed from control unit or web browser. For Control unit procedure please see operation manual.

For Calibration on web page
Open web browser with I.P. adress to JB70D1 Electronic unit. Goto Calibration and start “Auto Calibration”

Set distance of first leg. The leg should take at least 5 minutes to sail (distance can be shorter when sailing slowly). Example: A calibration point at 5 knots the distance should be 1 nautical mile.

Auto Speed calibration

<table>
<thead>
<tr>
<th>Actual distance to sail</th>
<th>Nautical miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Real</td>
<td>0.0</td>
</tr>
<tr>
<td>Measured</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Not a line of known distance on the ship position chart in an area with little wind and low stable current. Enter the length of the plot line in Actual distance. Sail the line at a stable speed (not a fixed heading). Press start and stop when the vessel crosses the ends of the line. Turn and repeat in the opposite direction at the same speed. This calibration technique is the most accurate.
Draw a line on the chart with the required distance. Point A in start and Point B in end.

Start first leg. (The vessel crosses point A at the calibration speed, towards point B).
• Stop first leg. (The vessel reaches point B on the chart and turns to sail the line in the other direction).
• Save first leg. (If the presented speeds look correct, save the leg and continue).
• Second leg, option. (If you do not have the possibility to turn the vessel, you can use the first leg data directly. If the first leg data is of poor quality, you may not be given the option to continue).
• Start second leg. (The vessel crosses point B sailing towards point A, sailing at the same speed as leg 1).
• Stop second leg. (Press as the vessel passes point B)
• Calibration result and save option. (The user can decide to accept or reject this calibration, and in which memory position to save it)

Auto Speed calibration

<table>
<thead>
<tr>
<th>Actual distance to sail:</th>
<th>Press Start Leg when start of calibration path is reached</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nautical miles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start Leg 1</td>
</tr>
<tr>
<td></td>
<td>Break</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibration point:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real:</td>
<td>0.0</td>
</tr>
<tr>
<td>Measured:</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Plot a line of known distance on the ships chart in an area with little wind and low, stable current. Enter the length of the plotted line in Actual distance. Sail the line at a stable speed (note: sail along the track, not at a fixed heading). Press start and stop when the vessel crosses the ends of the line. Turn and repeat in the opposite direction at the same speed. This calibration technique is the most accurate.

If necessary, the procedure should be repeated at different speeds. SKIPPER recommend that calibration is performed at a low speed and a high speed.
The test and calibration should be documented. Example of HAT/SAT test below.
Complete HAT/SAT document may be downloaded from SKIPPER web page www.skipper.no
A copy of the document should be sent to warranty@skipper.no

Installation test procedure

Warranty registration card

Speed Log

<table>
<thead>
<tr>
<th>Consist of</th>
<th>Part number</th>
<th>Serial number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display unit:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transceiver/Electronic unit:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom parts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeater(s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Access to sensor: (Through cofferdam, ballast tank, fore peak tank, dry compartment, etc.)

Name of vessel:

SKIPPER registration no:

Owner name:

Owner address:

Harbour test (Estimated duration 0,5 Hour): Status

- Switch on log, adjust brightness & contrast to correct level and to verify function ok.
- General checkout of soft keys.
- Toggle between display modes. Check water and bottom track.
- Check depth on sea chart and compare with sounder function.
- Activate manual speed and adjust to 10 knots. Verify that repeaters are displaying correct speed & distance.
- Check actual water temp. with known source and compare with DL850 readout.
- Verify that test speed is displayed on radars, conning and ecdis if connected.

Tests performed at sea (Estimated duration: 2 hours): Status

- Verify proper operation of log, at low speed and high speed.
- Calibration results. (only first and last speed)

<table>
<thead>
<tr>
<th>Actual speed1</th>
<th>Measured speed1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual speed2</td>
<td>Measured speed2</td>
</tr>
</tbody>
</table>

Comments:

Installation procedure performed / Instruction in usage given. Sign:

Date:

Name:

Position and company:

Installation procedure accepted/Instruction in usage received. Sign:

Date:

Name of responsible person:

Position of responsible person:
CHAPTER 6: SERVICE SW DIAGNOSTICS

For installation and connection of PC with service software please see Chapter 3

UPGRADING AND EXTERNAL DIAGNOSTICS OF THE SYSTEM

The system has 3 main elements; control unit, electronic unit and sensor. These elements may be upgraded using the SKIPPER service software, available for download from www.skipper.no. In the software select the item to be tested/upgraded and follow the instructions. New software updates can be downloaded from the website or via this software.

LIVE VIEW OF SENSOR RAW DATA

The system has 3 main elements:

1: Under “Multi Speed logs”
 Start DL1 Multi

2: Choose the RAW data folder

3: Set correct IP adress of JB70D1 unit

4: Start RAW data modus
 During RAW data measures data baud rate will change from 4800 to 115200. The baud rate will automatically switch back to 4800 when stopping the RAW data or by power off/on the unit. (Outputs of the system will stop while RAW data is active. Display will show “ERROR”)

5: The RAW data will be shown as two graphs
 At 0 knots speed the highest point of graphs will be at at the same point. (Frequency)
 In speed the the tops will move from each other. This is caused by the doppler shift in frequency being positive for forward channel and negative for aft looking channel.

A noise top will interfere on the speed measure if larger than the speed top.
CHAPTER 7: TROUBLESHOOTING

CONTROL UNIT CD402 TROUBLESHOOTING.

Check that a red dot is blinking in right top corner of display. This is indication of processor being OK.

“ERROR”. CD402CU does not detect the JB70D1-XX unit
Check that Electronic unit is powered
Check LAN cabling from Display to Electronic unit.
Check port and IP set up “Chapter 3: Setup LAN Communication” on page 24

“ERROR COM”. CD402CU detects the JB70D1-XX unit but JB70D1 is sending message that it does not receive any message from CD402CU.

“STW ERROR
No or invalid data from sensor.

ELECTRONIC UNIT JB70D1 DIAGNOSTICS

STATUS LED 1 (Green)
Not in use

STATUS LED 2 (Yellow)
Not in use

STATUS LED 3 (Green)
SW up to ver 1.57: ON. OK
SW from ver 1.58
Blinking 1Hz receive sensor signal
Blink every 5 Second. No sensor signal
Input power OK
Both LEDs lit when 24VDC or 115/220VAC detected.

LAN Power (Green)
Lit when Display is powered over LAN.

LAN data (Yellow)
LAN detected (Yellow)

Screen update indicator (Green)
Blinks each screen update..

NMEA In (Green)
Sensor Signal In (Green)
CHAPTER 8: SPECIFICATIONS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>STW 1-axis</td>
<td></td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>700-730 kHz</td>
</tr>
<tr>
<td>Speed range</td>
<td>+/-50 knots</td>
</tr>
<tr>
<td>Bottom track</td>
<td>NA</td>
</tr>
<tr>
<td>Water track</td>
<td><3m (2-12m)</td>
</tr>
<tr>
<td>Aft transversal speed</td>
<td>NA</td>
</tr>
<tr>
<td>Accuracy (better than)</td>
<td>0.2 knots or 2% Whatever greater</td>
</tr>
<tr>
<td>Temperature accuracy</td>
<td><1 °C</td>
</tr>
<tr>
<td>Control Unit</td>
<td>CD-402CU LED display. 144*144mm. Ethernet</td>
</tr>
<tr>
<td>Electronic unit</td>
<td>JB70D21. Dimensions: 115115180mm</td>
</tr>
<tr>
<td>Com. with control unit</td>
<td>LAN</td>
</tr>
<tr>
<td>NMEA sentences transmit</td>
<td>VBW, VLW, MTW, VHW, XDR, ALR</td>
</tr>
<tr>
<td>NMEA sentences receive</td>
<td>ACK, DDC, VTG, ZDA, GGA</td>
</tr>
<tr>
<td>Pulse output</td>
<td>Yes</td>
</tr>
<tr>
<td>Analog output</td>
<td>4-20mA and 0-10V</td>
</tr>
<tr>
<td>Alarm</td>
<td>Speed alarm, Power failure alarm, function alarm</td>
</tr>
<tr>
<td>Power supply</td>
<td>AC 115 - 230 V 50/60 Hz, and/or DC 24 V. Max 60W</td>
</tr>
<tr>
<td>Sensor</td>
<td>DL1. 60mm</td>
</tr>
<tr>
<td></td>
<td>Cable outer diameter 11mm</td>
</tr>
<tr>
<td></td>
<td>Cable minimum bending radius 25mm</td>
</tr>
<tr>
<td>Sea Valves</td>
<td>Single bottom</td>
</tr>
<tr>
<td></td>
<td>Double bottom</td>
</tr>
<tr>
<td>Tanks</td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td>Aluminium</td>
</tr>
<tr>
<td>IP rating</td>
<td>IP22 Control unit</td>
</tr>
<tr>
<td></td>
<td>IP22 Electronic unit</td>
</tr>
<tr>
<td></td>
<td>IPX7 Sensor unit</td>
</tr>
<tr>
<td>Accessories</td>
<td>IR300 Speed repeater. Dimming Control. CD401MR-SB Multirepeater.</td>
</tr>
<tr>
<td>Classification</td>
<td>IMO</td>
</tr>
</tbody>
</table>
IEC61162-2 HIGH SPEED NMEA COMMUNICATION
This standard requires a common signal ground between system requiring extra circuitry for isolation on the receiver side. This unit does not have this circuitry, and cannot fulfill the receiver part of the standard, however by connecting the common signal ground to pin 10 marked Common, the transmitting part of the standard is fulfilled.

IEC61162-450 ETHERNET COMMUNICATION
The system is defined as ONF2 and SF,NF as per the standard (§4.1). This means it will send and receive encapsulated messages as defined in these standards, but has in addition web pages with a separate IP address. The -450 standard requires the UdP multicast messages to have a unique identifier, and transmission group. See ““ on page 39
The system can be connected to a standard network using CAT 5 or better cables, the system will load the network with a maximum datarate of 20Kb/s (typical 3Kb/s), and will operate a network loads of up to 20 Mb/s or 10000 datagrams per second. The maximum number of datagrams directed to the unit must not exceed 2500/second (normal usage is 3-5).
Error codes are logged if the formats are not according to specification. These messages can be retrieved and viewed using the “Upgrading and external diagnostics of the system” on page 35.
The CD401CU must be paired to the JB70D1 unit, this to make sure the CD401CU talks only to one electronic unit on the network. To do this the user must enter the SFI ID of the JB70 unit into the web page of the CD401CU. For example VD0133, if the unit is only to have 1 control unit, then the control unit SFI ID can be entered into the JB70 unit. If no SFI is entered into the JB70D1, then any CD401CU with the correct destination SFI will work, allowing multiple control units.
APPENDIX 1: MISC DRAWINGS

Console mounting order:
A. Make a cut out in the Console (1) 125 x 125 (4.921 x 4.921)
B. Remove the mountingbracket (2)
C. Unscrew the 4 screws in the frame (3) one in each corner and remove the frame.
D. Put the Monitor (4) in the cut out and mark the 4 centerpoints for the Drill in the Console (1)
 (The drilling holes diam depends on thickness and material in the Console.)
E. Use Panh. screws DIN 7981 Diam. 2.9 (0.116). Length depends on the Console thickness.
F. Finally put on the frame (3). Make sure that the screwheads correspond with the cut outs in the frame.
Product Datasheet

JB70D1-SA Electronic Unit
for DL1-Multi Single Axis Doppler Speed Log

Specifications

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JB70D1-SA</td>
<td>Electronic unit for DL1-Multi Single Axis Doppler Speed Log. Provides calibrated single axis Speed Through Water (STW) data to control units and other integrated navigation systems</td>
</tr>
</tbody>
</table>

To be used with

- CD402CU-XX
- DL1SX-XX
- Control unit compact with LAN
- Log sensor for SB/DB-60-SA Doppler, 40 m

The junction box contains

- JB70D1-SA
- M-KIT-JB70XX
- Electronic unit for DL1-Multi
- Mounting Kit for JB70

Power

- 115 - 230 VAC
- 24 V DC
- 24 V DC (backup)
- Max 60 W typ. 10 W

Interfaces

- NMEA 0183, IEC61162-1/2, 4 output, 1 input
- Auxiliary x 3 output, 2 input
- Relay x 1
- Analogue output x 1

- Supports NMEA 0183 (IEC61162-1)
- (IEC61162-2 outputs)
- Auxiliary can be designated to alarm, pulse, speed warning
- Relay designated to function and power failure
- 0-10 V, 1x 4-20 mA

LAN

- IEC 61162-450 fully implemented web page setup
- Connection to CD402CU-XX via LAN or NMEA configurable web pages for setup and runtime functions

IP rating

- IP 2X

Weight

- 1.2 kg

Packaging dimensions / weight

- 30.5 x 21.5 x 21 / 1.7 kg

Manufacturer

- SKIPPER Electronics AS, Norway

Date: 2019-08-26
Product Datasheet

DL1ST-XX LOG SENSOR FOR TANK
DOPPLER, 40 m

Specifications

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>DL1ST-XX</td>
</tr>
</tbody>
</table>
| To be used with | DL1
| | DL1-Multi |
| The Sensor contains the following main parts | TC-2000
| | DL1S-540-ZA |
| | Tank adaptor for sensor EML224ST-XD |
| | Doppler sensor moulded 40 m cable |
| Accuracy | 0.2 km or 2 % whichever is greater |
| Speed Resolution | 0.01 km |
| Max speed | +/- 50 km |
| Temperature accuracy | 1 deg |
| Temperature resolution | 0.1 deg |
| IP rating | IP 68 |
| Depth rating | 5 bar |
| Operating temperature | -15 to +55 deg |
| Outputs | 1 NMEA (Proprietary formats) |
| Input | 1 NMEA (Proprietary formats) |
| Power input | Nom. 24V (18V to 32V) 8W |
| Weight | 9 kg |
| Manufacturer | SKIPPER Electronics AS, Norway |

SKIPPER Electronics AS
Erebakkeveien 150
P. O. Box 151, Manglerud
0612 Oslo, Norway

E-mail: support@skipper.no
Tel: +47 23 30 22 70
Fax: +47 23 30 22 71
Co. reg. no: NO.965378847 - MVA
www.skipper.no

Date: March 2013
Edition: 00032813
Product Datasheet

DL1SG-XX LOG SENSOR FOR SB/DB SEA VALVE, 40 m

Specifications

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>DL1SG-XX LOG SENSOR FOR SB/DB SEA VALVE, 40 m</td>
</tr>
<tr>
<td>To be used with</td>
<td>DL1, DL1-Multi</td>
</tr>
<tr>
<td>The Sensor contains</td>
<td>DB-1023, DL1S-715-ZA, ZOA-01018, ZOA-01150</td>
</tr>
<tr>
<td>Adapter for EML SB/DB 60 mm Sea valve</td>
<td></td>
</tr>
<tr>
<td>Doppler sensor moulded 40 m cable</td>
<td></td>
</tr>
<tr>
<td>Spring washer stainless M5 DIN 127B A4</td>
<td></td>
</tr>
<tr>
<td>Allen Screw M5x18 DIN912 A4 70</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.2 km or 2 % whichever is greater</td>
</tr>
<tr>
<td>Speed Resolution</td>
<td>0.1 km</td>
</tr>
<tr>
<td>Max speed</td>
<td>+/- 50 km</td>
</tr>
<tr>
<td>Temperature accuracy</td>
<td>1 deg</td>
</tr>
<tr>
<td>Temperature resolution</td>
<td>0.1 deg</td>
</tr>
<tr>
<td>IP rating</td>
<td>IP 66</td>
</tr>
<tr>
<td>Depth rating</td>
<td>6 bar</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-15 to +55 deg</td>
</tr>
<tr>
<td>Outputs</td>
<td>1 x NMEA (Proprietry formats)</td>
</tr>
<tr>
<td>Input</td>
<td>1 x NMEA (Proprietry formats)</td>
</tr>
<tr>
<td>Power Input</td>
<td>Nom. 24 V (15 V to 32 V) & W</td>
</tr>
<tr>
<td>Weight</td>
<td>5 kg</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>SKIPPER Electronics AS, Norway</td>
</tr>
</tbody>
</table>

Image:
- Image of product dimensions:
 - Diameter: 60.1 mm
 - Height: 66.9 mm
 - Diameter of cable: 11 mm
- Image of product: Red cylindrical device with green cable.
ALTERNATIVE NMEA COMMUNICATION CD402 TO JB70D1

If the LAN port is required for output communication to other systems and a switch is not available, it is possible to connect the CD402CU via NMEA communications. In this case the connector on the rear of the CD401 NMEA out should be connected to NMEA IN in the JB70D1-XX unit, and the CD401CU-XX NMEA IN should be connected to the -AUX SEN OUT connector. The option CD401 communication should be set to NMEA-SENS.

On the JB70D1.

CD402CU connection

<table>
<thead>
<tr>
<th>Input port:</th>
<th>Output port:</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sensor IN</td>
<td>Sensor OUT</td>
</tr>
<tr>
<td>NMEA IN</td>
<td>NMEA OUT</td>
</tr>
<tr>
<td>Ethernet (UDP/IP)</td>
<td>Ethernet (UDP/IP)</td>
</tr>
</tbody>
</table>

Diagram:

- **Pin 11,12**
- **Pin 9, 10**
- **Power + pin 1**
- **- pin 2**

LAN POWER

- **LAN IN**
- **LAN OUT**
- **NMEA IN**
- **NMEA OUT**
- **Sensor IN**
- **Sensor OUT**
- **AUX IN**
- **AUX OUT**
- **ALARM IN**
- **ALARM OUT**
- **ALARM NC**
- **ALARM NO**

Connector Diagram:

- **Pin 12**
- **Pin 1**
- **Power + pin 1**
- **- pin 2**
APPENDIX 2: OPTIONAL FEATURES

SINGLE BEAM OPERATION
The DL1 Measures the STW by two acoustic beams. One pointing forward the other pointing aft. In each channel (beam) the speed through water is measured in a distance from the sensor 0,5 - 3m. The average of those two beams are presented as the speed through water.

In case one of the beams are having problems it is possible to filter out a problematic channel.

Goto setup by pressing “Menu” and “Set” at the same time. Press “down” to highlight “Filtr”. Press “Set”.

Set “Filtr” to “ON” by pressing “UP” button.

Exit by pressing “Menu” and hold for 1 second.

Standard flashing indication of CPU is “alive”

Indication of “Filter” is “ON”

Indication of one beam is filtered out
WARRANTY AND UTILIZATION

Warranty:
• SKIPPER Electronics AS gives 12 months limited guarantee on all deliveries from SKIPPER Electronics AS, Norway.

• Please note that if the equipment is delivered by a third party, the third party’s warranty conditions may apply.

• All warranty request should be sent to the local supplier of the equipment.

Utilization:
• This equipment is not to be disposed in normal waste, but be handled in accordance with applicable waste disposal regulations in the country where the equipment is used.

User manual:
• For more information of usage and display setup, refer to the User manual (DM-M005).
 It is available on the SKIPPER web page www.skipper.no.