INSTALLATION MANUAL
COMMUNICATING WITH US

If you need more information, support or other assistance from us, do not hesitate to contact us:

SKIPPER Electronics AS
P. O. Box 151, Manglerud
0612 Oslo
Norway

Phone: (+47) 23 30 22 70, Fax: (+47) 23 30 22 71
E-mail: support@skipper.no

SOFTWARE UPDATES AND TECHNICAL SUPPORT

Find us on the internet: www.skipper.no

YOUR FEEDBACK IS APPRECIATED

If you find errors, misspellings or poorly explained sections in this document, we are happy to receive your feedback at:

support@skipper.no
CONTENTS

INTRODUCTION.. 6
 The DL1-Multi Doppler speed log system ... 6
 Overview DL1 .. 7
 Connectors supplied with JB70D1 .. 8
 Items supplied locally ... 9
 What to do .. 9

CHAPTER 1: HARDWARE MOUNTING .. 10
 Placement of the speed log sensor and bottom installation ... 10
 Sensor orientation .. 12
 Documentation of Installation ... 13
 Placement of the electronic unit (JB70D1-XX) ... 14
 Placement of the control unit (CD402CU-XX) ... 15
 Placement of repeaters CD401MR-XX .. 15

CHAPTER 2: WIRING ... 16
 Electronic unit .. 16
 Connecting sensor to Electronic unit ... 16
 the junction box JB12, and cable extensions ... 18
 CD402 Control unit to Electronic unit .. 19
 Cable diagram CD402XX-SC .. 19
 Connecting dimmer units to CD402 .. 20
 Alarm connection ... 21
 Auxiliary input and outputs. ... 22
 Analog output ... 22

CHAPTER 3: SETUP LAN COMMUNICATION .. 24
 LAN setup ... 25

CHAPTER 4: WEB SETUP OF SPEEDLOG .. 26
 CD402CU communication with JB70DL .. 26
 JB70DL communication with CD402CU ... 27
 DL70DL NMEA setup .. 28
 DL70DL AUX setup ... 29
 Alarms .. 30
 Alarm setup .. 30
 Sensor Alarm ... 30
 CD402 Control Unit Self Test .. 31
 Running in demo mode ... 32

CHAPTER 5: SEA TEST AND CALIBRATION ... 33

CHAPTER 6: MAINTENANCE .. 36
 Maintenance .. 36
 Version control and logging of the setup ... 36
 Naming the system ... 36

CHAPTER 7: TROUBLE SHOOTING ... 37
 Control Unit CD402 Trouble shooting.. 37
 Electronic Unit JB70D1 Diagnostics ... 37

CHAPTER 8: SPECIFICATIONS ... 39

APPENDIX 1: MISC DRAWINGS ... 41
 JB70D1 exploded view .. 45
 Alternative NMEA communication CD402 to JB70D1 ... 46

WARRANTY AND UTILIZATION .. 47
 Warranty: ... 47
 Utilization: ... 47
 User manual: ... 47
Terminology

Terms used in this manual

Units

Unless otherwise stated, all values shown on the display are as follows:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>Knots</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Tilt</td>
<td>Degrees</td>
</tr>
<tr>
<td>Distance</td>
<td>Nautical Miles (NM)</td>
</tr>
</tbody>
</table>

Abbreviations

In addition, the following symbols are used:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>Water Track</td>
</tr>
<tr>
<td>CAT6</td>
<td>Category 6 cable as defined in the standard</td>
</tr>
<tr>
<td>INS</td>
<td>Integrated Navigational System</td>
</tr>
<tr>
<td>MED</td>
<td>Marine Equipment Directive</td>
</tr>
<tr>
<td>VBW</td>
<td>Dual ground/Water speed</td>
</tr>
<tr>
<td>VHW</td>
<td>Heading & Water speed</td>
</tr>
<tr>
<td>NMEA</td>
<td>National Marine Electronics Association</td>
</tr>
<tr>
<td>NAUT</td>
<td>Class notation for enhanced nautical safety</td>
</tr>
</tbody>
</table>
INTRODUCTION

The DL1-Multi Doppler Speed Log System

The DL1-Multi single axis Doppler speed log system is a vessel mounted system that measures speed in one axis (longitudinal) through the water. The system fulfills all class and type regulations based on MED B (wheelmark).

The system requires no external inputs, however adding inputs from other navigational systems enhances the functionality and allows comprehensive quality control of the data.

The system comprises of 3 units;

1. **The control unit** – The system requires a small control unit (CD402CU-XX) to display and set up the required parameters. All setup parameters are also available by connecting to the electronic units web page via a LAN cable.

2. **The electronic unit** – This unit (JB70D1-XX) comprises of a processor/IO board and a power supply. It is packaged in a compact single euro cabinet. This unit’s electronics enable the user to interface to both modern and older navigation systems with all the expected connectivity. The unit has a built-in web server, allowing the system to be fully integrated into existing navigation systems (extra approvals may apply).

3. **The sensor** – The sensor (DL1SXX-XX) contains 2 acoustic elements and a fully programmable transceiver unit, allowing the system to adapt itself to the conditions and requirements. In addition, the sensor contains a temperature sensor for internal compensation and quality control.

4. The sensor is installed into a sea valve or tank welded into the hull.
The sensor may be installed into sea valve for single bottom hulls (as shown) or sea valve for double bottom hulls. SKIPPER Electronics supply a variety of sensor installation options for new buildings and retrofit. Please contact SKIPPER Electronics for information.
Connectors Supplied with JB70D1

ZZN-01126 Relief Housing, 3 pole snap-on.
WAGO: 232-633

ZZN-01125 Plug, Female 3 pole, 231-303 026

ZZN-01124 Plug, Female 2 pole, 231-302_032-000

ZZN-01121 Connector, Female w ejectors 12x2 pole, black
WAGO 713-1112/037-000

ZZN-01122 Strain relief plate, 12x2 pole, width 39 mm, 713-128

ZZN-01120 Connector Female w ejectors 6x2 pole, black
WAGO 713-1106/037-000

ZZN-01123 Strain relief plate, 6x2 pole, width 11 mm
WAGO 713-126
ITEMS SUPPLIED LOCALLY

Note: The intermediate tube is yard supply.

WHAT TO DO

Before receiving the system, some time must be taken finding the best sensor location, a suitable mounting fixture and wiring design of the system on the vessel. The manufacturer can give advice if required.

Date: 2018-05-29
CHAPTER 1: HARDWARE MOUNTING

PLACEMENT OF THE SPEED LOG SENSOR AND BOTTOM INSTALLATION
When placing the speed log sensor, consider the following moments:

- The DL1 doppler sensor measures speed of water in a distance 2-8m away from sensor. 2 acoustic signals, one pointing 30° forward and the other pointing 30° aft.
- The sensor is installed into a sea valve or tank welded into the hull.
- It is necessary to select a part of the hull that is submerged and free from turbulence and aeration under all load and speed conditions, and to avoid positions where air is trapped in heavy weather.

The generally best placement on larger vessels is in the front region of the vessel just behind the bulbous bow (see area A on fig.). This area is generally designed such that the bubbles are pushed to either side of the bulb, leaving a clear area under the bulb and just behind.

- Do not mount transducers aft of bow thruster outlets, or aft of other hull installations (such as outlets, vents, or other protruding details) that may create aeration or turbulence.
- Welding seams in this area should be smoothed and rounded off in order not to create turbulence or aeration and maintain a laminar waterflow at all speed ranges of the vessel.
- Select an area that is acoustically quiet. The system operates at frequencies between 700 kHz and 740 kHz.

- If the bottom is sloped a housing (blister) should be constructed. It is recommended to allow a flat area of at least 30 cm in front and behind of the sensor and form the bed as a tear drop.

![Figure showing placement of a sensor with the individual beams pointing fore and aft.](image1)

![Figure showing the generally best sensor placement in the front region.](image2)

![Recommended mounting area](image3)
A sea valve is highly recommended over a tank installation, as it is possible to service the sensor (clean or replace) without docking the vessel. Economically, a sea valve is similar in price to a tank installation.

The best place for sensor installation is in a dry and accessible area like bow thruster room, just in front of the fore bow thruster, as deep as possible on the hull.

Even though sensor is approved to be installed in wet areas like ballast tank it is not recommended. If installed in a wet area special care to maintenance and maintenance access should be taken. A dry void space is recommended. A junction box for sensor cable should be mounted close to sensor allowing sensor change.

The sensor cable (green) is waterproof and carries digital signals to and from the sensor and power to the sensor. It must pass through the outer hull using a double water seal. This is included in the bronze tube in sea valves, or in the tank and stuffing tube. The cable is 11 mm in outer diameter with a bending radius of 25 mm. The cable can be cut if required.

Please refer to separate manuals for bottom parts.

Manuals are available from the SKIPPER web site www.skipper.no
SENSOR ORIENTATION

Tank mountings have an orientation (an arrow that must point forward) see next page. **Single axis speed logs do not have the possibility to correct heading error electronically and must therefore be mounted in line with the hull (within 2 degrees).**

Orientation in Sea Valve
The sensor is typically mounted after the vessel is in water. Care must be taken that the ahead mark on the bottom installation is correct (seen from the inside by the flat edge being on port side).

Orientation in Tank
When welding tank to hull care must be taken that the ahead mark on the bottom installation is correct. It is not possible to adjust orientation after vessel is afloat.
DOCUMENTATION OF INSTALLATION.
Before vessel is launched from dry-dock it is important to make documentation of hull installation.
By providing the pictures in below registration card it may help us understand how the bottom equipment is installed. It is very expensive and time consuming to provide these pictures after vessel is launched.
This document may also be downloaded from the SKIPPER web page

A copy of the document with pictures should be sent to warranty@skipper.no

![Installation test procedure][1]

Warranty registration card

<table>
<thead>
<tr>
<th>Consist of</th>
<th>Part number</th>
<th>Serial number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display unit:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transceiver/Electronic unit:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom parts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeater(s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Access to sensor: (Through cofferdam, ballast tank, fore peak tank, dry compartment, etc.

<table>
<thead>
<tr>
<th>Name of vessel:</th>
<th>SKIPPER registration no:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner name:</td>
<td></td>
</tr>
<tr>
<td>Owner address:</td>
<td></td>
</tr>
</tbody>
</table>

Before placing vessel in water (Estimated duration 0,5 hours):

1. Document positioning of the bottom
2. Document grinding of welding seams
3. Position from forward
4. Document inside mounting of bottom equipment (show tubing and tank or sea valve)

- Check area around sensor is smooth, and no tape or paint on sensor.
Placement of the electronic unit (JB70D1-XX)

All parts of the system are connected to the electronic unit. Power, Control unit, Sensor, all I/O signals (alarm, NMEA, pulse out etc)

Access to Electronic unit only needed for service. Placement is typically in or near the bridge where the interfaced systems are available, but no nearer than 0.3 m to the GYRO heading sensor. In case it can be placed on, for example, the navigation table.

1. Install a mounting DIN rail EN 50022 (if not existing) on the wall.
2. Mount the JB70D1-XX on the rail. Be sure that the unit is properly mounted, see detail A.
3. Mark the 4 centerpoints for the drill in the wall (A).
4. NB! The drilling holes diam. depends on thickness and material of the wall.
5. Use self tapping screws ST3,5 DIN 7981-C pozidrive (A). (The screw length depends on the wall thickness).

PLACEMENT OF THE CONTROL UNIT (CD402CU-XX)

If required, the control unit is placed on the bridge. Some standards require some operations of the unit to be available from 'standing position', and in this case the unit must be near the steering position. However, it is also possible to control some of these settings from multi-repeaters with 2-way communication (ex: CD401MR-SB) In which case, the Control unit can be placed on, for example, the navigation table.

PLACEMENT OF REPEATERS CD401MR-XX

Repeaters are typically installed on the overhead console and/or the bridge wings. These can be routed using NMEA signals. These require a local +24 V DC supply. Same dimensions as CD402.
CHAPTER 2: WIRING

ELECTRONIC UNIT
All parts of the system are connected to the electronic unit. The electronic unit has pluggable spring loaded connectors, as well as an RJ45 LAN interface. NMEA (4 output, 1 input ports), pulse, AUX (control signals) and optional analogue output signals can be connected. The electronic unit requires either 24 V DC or 115 - 230 V AC (50 - 60 Hz), max 60 W. Both can be connected simultaneously. If required, a separate AUX 24 V supply can also be connected.

The supplies are not internally isolated and ground will be connected to chassis at a single point (The screw between the DC connectors), Cables to and from the cabinet should be grounded to the grounding points on the chasis using a faston spade (type AMP - 140814-1 - TAB, FASTON, Example mating part 5-160447-5 - CRIMP RECEPTACLE)

The JB70D1-XX does not contain a physical ON/OFF switch (only software in sleep mode) and should be connected to a circuit breaker, or power cable should be unplugged for removal of power.

CONNECTING SENSOR TO ELECTRONIC UNIT
The sensor is provided with a 40 m cable. This can be cut, or extended with a screened CAT6 standard, or better, cable. The individual internal wires can be spliced or connected using a JB12 junction box. Signals in these cables are digital differential (RS-422) signals and also power (+24 V DC). Power is the limiting factor in these cables and is tested up to 400 m. For longer distances, a separate +24 V DC power supply may be needed at the JB12 junction box.
SENSOR CABLE PLUG

Cables should be connected as shown, leaving approximately 3 cm of tail. They should be stripped with 6-7 mm of metal showing and these should be connected as in the diagram above. A small screwdriver with blade size approx 3.5 mm, can be used, although WAGO part no 210-719 is ideal for this use.

In a ground stud on the edge of the cabinet. The outer insulation should be cable tied to the plastic handle of the connector, and securely anchored nearby. The plugs, when refitted, must be installed such that their clips are fully in the up position.

If yard cables are too thick or heavy to clamp, anchor the outer insulation nearby, and feed the inner cables to the connector.

If the connector is missing, lost or broken, replacements are available from Skipper (PN ZZN-01121) or Wago (part no. 713-1112/037-000)

GROUNDING

A general rule is that cable shields should be grounded in one end of the cable only. The DL1 sensor contains a grounding point internally and this is connected to the outer shield of the cable. This cable does not need to be grounded at the dry end.

WAGO part no 210-719
THE JUNCTION BOX JB12, AND CABLE EXTENSIONS

<table>
<thead>
<tr>
<th></th>
<th>Description (seen from JB70XX)</th>
<th>Screen</th>
<th>Sensor cable</th>
<th>Colour (for CAT6)</th>
<th>Extension cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>+18 - 36 V DC</td>
<td>Individually screened pair</td>
<td>Common screen</td>
<td>Brown</td>
<td>Pair</td>
</tr>
<tr>
<td>Black</td>
<td>0 V</td>
<td>Individually screened pair</td>
<td></td>
<td>White(Brown)</td>
<td>(Pair)</td>
</tr>
<tr>
<td>Orange</td>
<td>RX+</td>
<td>Individually screened pair</td>
<td></td>
<td>Orange</td>
<td>(Pair)</td>
</tr>
<tr>
<td>White</td>
<td>RX-</td>
<td>Individually screened pair</td>
<td></td>
<td>White(Orange)</td>
<td>(Pair)</td>
</tr>
<tr>
<td>Black</td>
<td>TX+</td>
<td>Individually screened pair</td>
<td></td>
<td>Green</td>
<td>(Pair)</td>
</tr>
<tr>
<td>Yellow</td>
<td>TX-</td>
<td>Individually screened pair</td>
<td></td>
<td>White(Green)</td>
<td>(Pair)</td>
</tr>
<tr>
<td>Orange</td>
<td>AUX+</td>
<td>Individually screened pair</td>
<td></td>
<td>N/A</td>
<td>(Pair)</td>
</tr>
<tr>
<td>Yellow</td>
<td>AUX-</td>
<td>Individually screened pair</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

All individual screens to be grounded together and passed into the outer screen of the CAT5e cable.

Connect the sensor cable to the Extension cable as shown. All grounds are collected together and connected to the outer ground of the Extension cable. The grounds should **not** be connected to a local ground. If there is no room for the JB12 housing, the cables can be carefully spliced together. Both cables can be cut.

Cable Specifications

<table>
<thead>
<tr>
<th>Cable type</th>
<th>AWG/mm²</th>
<th>Max length at 24V (21V)</th>
<th>Loop ohms</th>
<th>Measured VDC at JB12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT6</td>
<td>23/0.258</td>
<td>250 (150)</td>
<td>35 (21)</td>
<td></td>
</tr>
</tbody>
</table>

Any screened 3 or 4 twisted pair cable can be used as long as the loop resistance (measured by twisting the pair together at one end and measuring the resistance) is less than 35 ohms if the Sensor power supply output is 24V, (21 ohms @ 21V; 9 ohms @ 18V). *By using 2 pairs of the cable in parallel for the power pair, the resistance is halved and the max length is doubled.*
CD402 CONTROL UNIT TO ELECTRONIC UNIT

The CD402XX-SC is powered by local 24VDC on pin 1 and 2 on Wago connector. Connection to Electronic with LAN connector directly or via LAN switch.

- **Cable Diagram CD402XX-SC**
<table>
<thead>
<tr>
<th>Signals</th>
<th>Pin number on pluggable WAGO back connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24 V</td>
<td>1</td>
</tr>
<tr>
<td>0 V</td>
<td>2</td>
</tr>
<tr>
<td>NMEA IN A</td>
<td>3</td>
</tr>
<tr>
<td>NMEA IN B</td>
<td>4</td>
</tr>
<tr>
<td>DIM UP A</td>
<td>5</td>
</tr>
<tr>
<td>DIM UP B</td>
<td>6</td>
</tr>
<tr>
<td>DIM DWN A</td>
<td>7</td>
</tr>
<tr>
<td>DIM DWN B</td>
<td>8</td>
</tr>
<tr>
<td>NMEA2 IN A *</td>
<td>9</td>
</tr>
<tr>
<td>NMEA2 IN B *</td>
<td>10</td>
</tr>
<tr>
<td>NMEA1 OUT A</td>
<td>11</td>
</tr>
<tr>
<td>NMEA1 OUT B</td>
<td>12</td>
</tr>
</tbody>
</table>

Note: NMEA in/out is not in use on LAN setup. See appendix for alternative set up.

Alternative 1
Connect CD402 Control unit to JB70D1 via LAN switch.

Alternative 2
Connect CD402 Control unit to JB70D1 directly.
CONNECTING DIMMER UNITS TO CD402

IR30 DIM
This is a simple unit with make or break double push buttons, used for pulse dimming. Holding down the buttons will ramp the dimming. An external DC voltage is required.

The IR30 dimmer may be connected directly to CD402 or to AUX in of JB70D1.

IR31 DIM
The CD402 may be dimmed by NMEA DDC commands. The DDC command is input to the NMEA input of JB70D1 Electronic unit. The IR31 taking up to 2 NMEA lines and multiplexing onto it a DDC or Proprietry message each time a button is pushed. Auto mode with internal or external light sensor the unit can be made to send messages when the correct light conditions are reached (User adjustable) Up and Down relays also allow older repeaters to be adjusted manually or automatically.
IEC61162-1 NMEA CONNECTION

The JB70D1-XX system has 1 NMEA isolated input and 4 output ports driven separately from a single com port, each capable of delivering 20mA. These are marked in blue and can be programmed to give out a number of messages. In addition, the LAN port can be used to provide the same formats using the IEC61162-450 standard. However, it should be noted that this port will normally also send out proprietry messages with information to the CD401CU-XX control unit. Approved messages are sent at a 1 second interval, and are marked with the ‘VD’ identifier. Data is sent at 4800 baud, 8 data bits, 1 stop bit. The inputs require 2mA when the voltage is limited to 2V. Generally the inputs use 2.5 mA if available.

NMEA In:
CN1 pin 2 and 4

NMEA Out1:
CN1 pin 6 and 8

NMEA Out2
CN1 pin 10 and 12

NMEA Out3
CN2 pin 1 and 3

NMEA Out 4
CN2 pin 2 and 4

ALARM CONNECTION

The system has a combined Function and power failure alarm relay. By connecting to the NC and common points the alarm will give a short circuit. The alarm output will change state on power up or power down, indicating a power failure, or when one of the other alarms is activated. If the power failure alarm is to be monitored separately one of the Aux output channels see “Auxiliary inputs and outputs.” on page », can be defined to this purpose (default Aux 2 out)
The Alarm can be reset using the aux inputs (default Aux 1)
Alternatively, all of these functions can be monitored on the NMEA channels. Power failure is monitored by the VDALR message disappearing totally
Auxiliary Input and Outputs.

Auxiliary input and outputs are electrically isolated and require a small voltage on the input to work. The labelling of the system is set up for the most common wiring configuration. All the pulse inputs and outputs are programmable and can be configured in the web menus to perform a number of tasks as shown below.

Aux in (marked ALRM RST IN on CN1 pin 16 and 18) can be switched to the following options:
- Alarm reset in (default): acknowledge an alarm
- Dimming Up
- Dimming Down
- Forward reverse (for 2 directional systems)

There are 3 Aux Outputs:
- Pulse out (default Aux Out1)
- Power failure alarm (default Aux Out2)
- Speed warning, min/max range set by the user (default Aux Out3)
- Alarm acknowledge output (default)
- Fitness alarm
- Silent (special non wheelmark option)

Analog Output

The DL1-Multi has outputs for analog speed on connector CN2.
- I OUT for 4-20mA on CN2 pin 11
- V OUT for 0-10V on CN2 pin 09.

These use a common ground and provide voltage. The current output will be max 24V.
CHAPTER 3: SETUP LAN COMMUNICATION

Both the Control unit and the Electronic unit have unique IP addresses, and system identification numbers. These are adjustable via the web page, but the default values are shown on the serial number labels. If changed it is recommended to make a label with the new address.

Startup requires the following steps:

1. **Connect the units together and use SKIPPER service software to find the relevant settings, alternatively address individual units using their IP addresses from a web browser.**

2. **If no switch is available, connect directly to each unit and use its web page to setup. Multirepeaters can be set up directly from the screen.**

3. **Note! If no DHCP server on network then change your PC TCP IP settings to “fixed IP”**.

SETUP USING SKIPPER SERVICE SW

For setup of IP addresses, Id and port please use SKIPPER service software. Available as download from:

http://www.skipper-service.no/skipdoc/data///Software/SkipperServiceSoftware/SetupProjectServiceSoftware.msi

Start “Com Setup”
Press “Find multi systems”
The software will search for SKIPPER products and present a list with settings. A table with all the detected system will be generated, and from this table it is possible to configure the units. Each Electronic unit JB70D1-SA must be paired with a control unit (CD402CU-SC) This is done by adding the identification of the JB70D1 unit to the Control units pair field.
If more than one control unit is to be used on a single Electronic unit then the field Pair field on the electronic unit (JB70D1) can be left blank. Otherwise enter the ID for the paired control unit.
Note. All units that are to detect each other must be in the same Group. This is by default NAVD.

LAN SETUP
Turn on the electronic unit and control unit (if attached). The electronic unit will attempt to self-connect, and go to the system setup screen. If the control unit is not available or does not work, (possibly IP clash) it will show a single ‘ERROR’ on screen, in this case connect a LAN cable to a RJ45 connector.
Go to web page (default IP address 172.16.1.104 for JB70D1 or 172.16.1.103 for CD402CU, or to the labelled IP address. From here you have access to the system setup page. If you cannot make contact by the above methods, use the SKIPPER service application (available from the web site, select the correct interface unit, and follow the instructions.
In accordance with the IEC61162-450 LAN interface standard, the System Unique identifier (default VD01XX where XX is the serial number) and Group (default NAVD) can be adjusted. The LAN works at 100BaseT speeds. A typical payload will be 2-7 kB/s
UdPbC0:s:VD0103,n:23*2A|$VDVBW,10.1,,A,,,V,,V,,C*58<CR><LF>
CHAPTER 4: WEB SETUP OF SPEEDLOG

CD402CU COMMUNICATION WITH JB70DL

Setup can be performed from web browser (preferably chrome or mozilla) available by connecting a PC to the LAN port using a tLAN cable. WEB browser for CD402 is just for setup of communication to the JB70D1 unit. All other parameters are on JB70 web browser or directly on CD402. In adress line type IP adress of CD402CU unit. Select “system configuration”.

System Configuration

<table>
<thead>
<tr>
<th>Serial No:</th>
<th>999999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network connection</td>
<td></td>
</tr>
<tr>
<td>IP address:</td>
<td></td>
</tr>
<tr>
<td>010 . 031 . 001 . 020</td>
<td></td>
</tr>
<tr>
<td>Subnet mask:</td>
<td></td>
</tr>
<tr>
<td>255 . 255 . 000 . 000</td>
<td></td>
</tr>
<tr>
<td>IP address of default router:</td>
<td></td>
</tr>
<tr>
<td>010 . 031 . 001 . 001</td>
<td></td>
</tr>
<tr>
<td>MAC Address:</td>
<td></td>
</tr>
<tr>
<td>50: c9: a0: 33: 6: 00</td>
<td></td>
</tr>
</tbody>
</table>

To change enter password in Maintenance page.

Multicast	
System ID (SFI)	28
Group	NAVD . 239.192.0.4
JB70 ID	VD 021

To change enter password in Maintenance page.

CD402 CU connection	
Input and output port:	
None	
NMEA	
Ethernet (UDP)	

| **NMEA baudrate** | |
| NMEA: 4800 | |

Same baudrate will be set for both input and output.
JB70DL COMMUNICATION WITH CD402CU

In address line type IP address of JB70DL unit.
Select “system configuration”.

System Configuration

<table>
<thead>
<tr>
<th>Serial No</th>
<th>214001</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address:</td>
<td>010.031.001.912</td>
</tr>
<tr>
<td>Subnet mask:</td>
<td>255.255.000.000</td>
</tr>
<tr>
<td>IP address of default router:</td>
<td>010.031.001.001</td>
</tr>
<tr>
<td>MAC Address:</td>
<td>50-c9-a0-33-6-65</td>
</tr>
</tbody>
</table>

Network connection:

To change enter password in Maintenance page

Multicast:

System ID (SFI): VID 0001

Group: NAVD 239.192.0.4

CU ID: 0284

To change enter password in Maintenance page

CD402 CU connection:

Input port:
- None
- NMEA IN
- Ethernet (UDP/IP)

Output port:
- None
- Sensor OUT
- NMEA OUT
- Ethernet (UDP/IP)

Apply | Cancel
DL70DL NMEA SETUP
NMEA setup is found under “System configuration”

NMEA inputs

The following inputs may be used to enhance the DL1:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>Time taken from these formats</td>
<td>Time taken from these format</td>
</tr>
<tr>
<td>TRIP</td>
<td>Trip reset command</td>
<td>Trip reset from repeaters, etc.</td>
</tr>
<tr>
<td>DDC</td>
<td>Display Dimming control</td>
<td>$DDC,a,xx,a,a*hh<CR><LF></td>
</tr>
<tr>
<td>ACK</td>
<td>Acknowledge alarm</td>
<td>$ACK,xxx*hh<CR><LF></td>
</tr>
</tbody>
</table>

NMEA outputs

<table>
<thead>
<tr>
<th>Output</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBW</td>
<td>Multiple Speed Commands</td>
<td>$VDVBW,x.x,A,,V,,V,,V*hh<CR><LF> Where x.x is longitudinal speed in knots, y.y is transversal in 2 axis systems speed in knots.</td>
</tr>
<tr>
<td>VLW</td>
<td>Distance Travelled through the Water</td>
<td>$VDVLW,x.x,N,y,N,,N,,N*hh<CR><LF> x.x is Daily Trip, y.y is total trip in NM</td>
</tr>
<tr>
<td>MTW</td>
<td>Temperature</td>
<td>$VDMTW,x.x,C, *hh<CR><LF> x.x is temperature in Celsius. All data fields are free format. Values will be presented with sign as needed (e.g “-” = Astern, Port)</td>
</tr>
<tr>
<td>VHW</td>
<td>Water speed and heading, relative</td>
<td>$VDVHW,,x.x,N,,x.x,,x.x,,K *hh<CR><LF> Resultant speed in knots and km/h.</td>
</tr>
<tr>
<td>XDR</td>
<td>Speed direction</td>
<td>$VDXDRA,,x.x,,D,,SPPDD *hh<CR><LF> The angular displacement (x.x) is set to 0 in forward direction and 180 in reverse direction.</td>
</tr>
<tr>
<td>ALR</td>
<td>Alarm</td>
<td>$VDALR,hhmmss.ss,xxx,V,A*hh<CR><LF> hhmmss.ss is time of the alarm condition change (if provided from GPS). xxx is alarm identification number (default 21). See further details in section NMEA ALARM</td>
</tr>
</tbody>
</table>
DL70DL AUX SETUP
AUX setup is found under “System configuration”

Aux In 1 is by default set to “Alarm reset”

Aux In options:
- Alarm reset
- Dim up
- Dim down
- Reverse (forward heading direction for ferries)

Aux Out options:
- Fitness (alarm)
- Power failure (alarm)
- Alarm acknowledge
- Pulse out
- Speed warning.
ALARMS
The DL1 system is classed as a category B Alarm. It can be remotely acknowledged, if required. It does not have an internal sounder, and must therefore be connected to an external sounder or BAM system. The system has 3 alarm types:
- Speed High, an alarm that indicates if the vessel exceeds the set speed.
- Speed Low, an alarm that indicates if the vessel falls below the set speed. (often indicating loss of steerage)
- System Failure: an alarm which will activate if the sensor stops reporting or reports a failure, or if the control unit and Electronic unit loose communication.
In addition the electronic unit can be wired to indicate if the power fails.

ALARMS SETUP
The system can provide alarms by auxiliary output (power failure is default aux 2), relay or NMEA/LAN. Remote acknowledge can be set up by input (default aux 1) or by ACK NMEA command, (both from NMEA port and LAN). Alarms are available for low speed, high speed and system failure. They can be activated or deactivated and given a unique alarm ID (default 21).
Most users will require an external alarm reset. This is available both as NMEA / ($XXACK,...*) signal or as a hardwired switch. In some cases (NAUT) an alarm acknowledge output may also be required. Aux outputs can be used for this purpose, or NMEA ALR messages.
Alarms are activated on the control unit or web. NMEA ALR format can be activated with other NMEA formats. LAN alarms require a destination system ID for the alarm system. This is entered on the web configuration pages.

### Situation	What happens	NMEA sentence	Symbol on screen	Hardware action
Spd < Hi spd | No alarm | $VDALR,hhmmss.ss,21,V,A,,SpeedHi*nn | None | None
Spd > Lo spd | No alarm | $VDALR,hhmmss.ss,21,A,V,,SpeedHi*nn | SPDHI or SPDLO Flash 'square' | Relay deactivate
Spd > Hi spd or Spd < Lo spd | SpeedHi or SpeedLo alarm | SPDHI or SPDLO | Relay deactivate
Either | | | |
Spd < Hi spd | un-acknowledged alarm, no alarm state | $VDALR,hhmmss.ss,21,A,V,,SpeedHi*nn | SPDHI or SPDLO flashing | Relay deactivate
Spd < Lo spd | No alarm, state user acknowledges | $VDALR,hhmmss.ss,21,V,A,,SpeedHi*nn | None | Relay active
User acknowledge | | symbol up or symbol down | Relay active
or | | | |
User acknowledge | acknowledged alarm state | $VDALR,hhmmss.ss,21,A,A,,SpeedHi*nn | symbol up or symbol down | Relay active
Spd < Hi spd | No alarm acknowledged | $VDALR,hhmmss.ss,21,V,A,,SpeedHi*nn | | Relay deactivate separate power failure off
Power failure | No message | | | |

SENSOR ALARM
The system also has an internal alarm that will indicate a problem with internal communication or a sensor failure. This alarm will operate if activated, and if the communication fails to the Display, (a CD402CU will then show a single ‘ERROR’ on screen). If the sensor fails to report, then a flashing ‘SENSR’ will appear on the screen and NMEA, this is handled by the normal method. A square symbol will be present until the failure is solved.
CD402 Control Unit Self Test

The user can run an internal system test, run individual hardware tests and report as pass or fail. The tests are designed to check the functionality of the input and output. Some require a loop from an input to an output.

Test 0: Check LEDs on CD401CU-XX control unit.
Test 1: Check internal memory.
Test 2: Check two way communication to the sensor.
Test 3: Send out a full length NMEA message on NMEA outputs.
Test 4 Send out a full length NMEA message on sensor outputs.
Test 5: Activate alarm relay, wait for a reset or loop around.
Test 6: Send a pulse out of the pulse output (aux 2 out), loop/wait for a pulse on the alarm reset (Aux 1 IN).
Test 7: Send a pulse out of the AUX 2 output, loop/wait for a pulse on Aux 2 input.
Test 8: Loop around the NMEA out to NMEA in and check at different baudrates.
Test 9: Loop around the sensor out to sensor in and check at different baud rates.
Test 10: Show Raw data from the sensor, and Quality factor

Quality factor is a value from 0 to 8 showing how strong the signal is relative to the noise. If the installation is poor, the noise may rise reducing this number, also if the return signal is weak, this value will also be low. Each unit is 3dB signal to noise ratio. The system is suspect with values below 3.

<table>
<thead>
<tr>
<th>CN Pin</th>
<th>Test number</th>
<th>CN Pin</th>
<th>Test number</th>
<th>CN Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1.2</td>
<td>8: NMEA test</td>
<td>CN1.6</td>
<td></td>
<td>CN1.9</td>
</tr>
<tr>
<td>CN1.4</td>
<td></td>
<td>CN1.8</td>
<td></td>
<td>CN1.11</td>
</tr>
<tr>
<td></td>
<td>5: Alarm</td>
<td>CN2.10</td>
<td></td>
<td>CN2.6</td>
</tr>
<tr>
<td>CN1.20</td>
<td></td>
<td>CN1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1.24</td>
<td></td>
<td>CN2.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1.16</td>
<td></td>
<td>CN2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN2.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RUNNING IN DEMO MODE
Once all parts are installed, the system can be made to run simulations of real situations. These are found in the demo setup.
The system has 4 demos:

Demo 1: Slowly ramps a speed up and down. This allows the user to monitor speed outputs, to set and trigger alarm (which can then be reset).

Demo 2: Fixes a speed on screen. This can be preset in the web page.

Demo 3: Transmits a fixed speed of longitudinal 5 kn and transversal 1 kn.

Demo 4: Simulates a speed on the sensor by pinging at the equivalent Doppler frequency - select the desired speed and press “SET”.

All these demo/simulations will cause an ‘S’ to flash in the corner of the CD401CU-XX control unit.
CHAPTER 5: SEA TEST AND CALIBRATION

A speed log will require calibration of speed after installation.
There are 2 types of calibration procedure
1. Auto Calibration

Auto Calibration is designed to ignore water current effects.
The procedure requires the vessel to sail a fixed length track at a constant speed. To remove the current and wind effects, the same track should then be sailed in the opposite direction at the same speed.
The average of these tracks will be used to calculate the speed difference between the real speed (measured using the actual distance and the time it took), and the measured speed (using distance from the sensor and the time it took).
This procedure must be performed at least once and then other speeds checked with the GPS or manual calibration.

A calibration procedure may be performed from control unit or web browser.
For Control unit procedure please see operation manual.

For Calibration on web page
Open web browser with I.P. adress to JB70D1 Electronic unit.
Goto Calibration and start “Auto Calibration”
Set distance of first leg. The leg should take at least 5 minutes to sail (distance can be shorter when sailin-slowly). Example: A calibration point at 5 knots the distance should be 1 nautical mile.

Auto Speed calibration

<table>
<thead>
<tr>
<th>Actual distance to sail</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>alth 5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration point</td>
<td></td>
</tr>
<tr>
<td>Real</td>
<td>0.0</td>
</tr>
<tr>
<td>Measured</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* Not a line of the chart in an area with little wind and low stable current. Enter the length of the plotted line in Actual distance. Sail the line at a stable speed (no sail along the track, not at a fixed heading). Press start and stop when the vessel crosses the ends of the line. Turn and repeat in the opposite direction at the same speed. This calibration technique is the most accurate.
Draw a line on the chart with the required distance. Point A in start and Point B in end.
Start first leg. (The vessel crosses point A at the calibration speed, towards point B).
• Stop first leg. (The vessel reaches point B on the chart and turns to sail the line in the other direction).
• Save first leg. (If the presented speeds look correct, save the leg and continue).
• Second leg, option. (If you do not have the possibility to turn the vessel, you can use the first leg data directly. If the first leg data is of poor quality, you may not be given the option to continue).
• Start second leg. (The vessel crosses point B sailing towards point A, sailing at the same speed as leg 1).
• Stop second leg. (Press as the vessel passes point B)
• Calibration result and save option. (The user can decide to accept or reject this calibration, and in which memory position to save it)

Auto Speed calibration

<table>
<thead>
<tr>
<th>Actual distance to sail: 01.000 Nautical miles</th>
<th>Press Start Leg when start of calibration path is reached</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration point:</td>
<td></td>
</tr>
<tr>
<td>Real:</td>
<td></td>
</tr>
<tr>
<td>Measured:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>5</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>6</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>7</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>8</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>9</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
</tbody>
</table>

Plot a line of known distance on the ships chart in an area with little wind and low, stable current. Enter the length of the plotted line in Actual distance. Sail the line at a stable speed (note: sail along the track, not at a fixed heading). Press start and stop when the vessel crosses the ends of the line. Turn and repeat in the opposite direction at the same speed. This calibration technique is the most accurate.

If necessary, the procedure should be repeated at different speeds. SKIPPER recommend that calibration is performed at a low speed and a high speed.
The test and calibration should be documented. Example of HAT/SAT test below.
Complete HAT/SAT document may be downloaded from SKIPPER web page www.skipper.no
A copy of the document should be sent to warranty@skipper.no

<table>
<thead>
<tr>
<th>Speed Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consist of:</td>
</tr>
<tr>
<td>Display unit:</td>
</tr>
<tr>
<td>Transceiver/Electronic unit:</td>
</tr>
<tr>
<td>Sensor:</td>
</tr>
<tr>
<td>Bottom parts:</td>
</tr>
<tr>
<td>Repeater(s)</td>
</tr>
</tbody>
</table>

Access to sensor: (Through cofferdam, ballast tank, fore peak tank, dry compartment, etc.)

Name of vessel: | SKIPPER registration no:

Skipper registration no is the number you get in autopy by sending this completed form to warranty@skipper.no

Owner name: |
Owner address: |

Harbour test (Estimated duration 0,5 Hour):
- Switch on log, adjust brightness & contrast to correct level and to verify function ok.
- General checkout of soft keys.
- Toggle between display modes. Check water and bottom track.
- Check depth on sea chart and compare with sounder function.
- Activate manual speed and adjust to 10 knots. Verify that repeaters are displaying correct speed & distance.
- Check actual water temp. with known source and compare with DL850 readout.
- Verify that test speed is displayed on radars, conning and ecdis if connected.

Tests performed at sea (Estimated duration: 2 hours):
- Verify proper operation of log, at low speed and high speed.
- Calibration results. (only first and last speed)

<table>
<thead>
<tr>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heading offset</td>
</tr>
<tr>
<td>Actual speed1</td>
</tr>
<tr>
<td>Actual speed2</td>
</tr>
</tbody>
</table>

Comments: |

Installation procedure performed / Instruction in usage given. Sign:
Date: |
Name: |
Position and company: |

Installation procedure accepted/Instruction in usage received. Sign:
Date: |
Name of responsible person: |
Position of responsible person: |
CHAPTER 6: MAINTENANCE

MAINTENANCE

VERSION CONTROL AND LOGGING OF THE SETUP
All SKIPPER systems that use the PI-M001 module (as is the case in JB70D1-XX), use the same software, but are setup with a code number to activate the correct functions and defaults. The setup of the system can be seen in the maintenance web page, in the INFO screen under DIAG menu or on the info page of the CD401CU-XX.

NAMING THE SYSTEM
The system web page may be available over the whole network. Both the CD401CU-XX and JB70D1 units have very similar web pages, so it is important that the user knows which system is which. A name can be given to the system, and this will be shown in the top right corner of the web page.

UPGRADING AND EXTERNAL DIAGNOSTICS OF THE SYSTEM
The system has 3 main elements; control unit, electronic unit and sensor. These elements should be upgraded using the SKIPPER service software, available for download from www.skipper.no. In the software select the item to be tested/upgraded and follow the instructions. New software updates can be downloaded from the website or via this software. Connecting to a system element will also allow error logs to be downloaded, reporting errors that have occurred to the system in communications or internal hardware. More diagnostic information is available in the User manual DM-M005-SA
CHAPTER 7: TROUBLE SHOOTING

CONTROL UNIT CD402 TROUBLE SHOOTING.

Check that a red dot is blinking in right top corner of display. This is indication of processor being OK.

CD401CU shows “ERROR”.
CD402CU does not detect the JB70D1-XX unit
Check that Electronic unit is powered
Check LAN cabling from Display to Electronic unit.
Check port and IP set up “Chapter 3: Setup LAN Communication” on page 24

CD401CU shows “ERROR COM”.
CD402CU detects the JB70D1-XX unit but JB70D1 is sending message that it does not receive any message from CD402CU.

ELECTRONIC UNIT JB70D1 DIAGNOSTICS

<table>
<thead>
<tr>
<th>STATUS LED 1</th>
<th>(Green)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not in use</td>
<td></td>
</tr>
<tr>
<td>STATUS LED 2</td>
<td>(Yellow)</td>
</tr>
<tr>
<td>Not in use</td>
<td></td>
</tr>
<tr>
<td>STATUS LED 3</td>
<td>(Green)</td>
</tr>
</tbody>
</table>

SW up to ver 1.57: ON. OK
SW from ver 1.58
Blinking 1Hz receive sensor signal
Blink every 5 Second. No sensor signal
Input power OK
Both LEDs lit when 24VDC or 115/220VAC detected.

LAN Power
(Green)
Lit when Display is powered over LAN.

LAN data
(Yellow)

LAN detected
(Yellow)

Screen update indicator
(Green)
Blinks each screen update..

NMEA In
(Green)

Sensor Signal In
(Green)
CHAPTER 8: SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STW</td>
<td>STW 1-axis</td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>700-730 kHz</td>
</tr>
<tr>
<td>Speed range</td>
<td>+/-50 knots</td>
</tr>
<tr>
<td>Bottom track</td>
<td>NA</td>
</tr>
<tr>
<td>Water track</td>
<td><3m (2-12m)</td>
</tr>
<tr>
<td>Aft transversal speed</td>
<td>NA</td>
</tr>
<tr>
<td>Accuracy (better than)</td>
<td>0.2 knots or 2% Whatever greater</td>
</tr>
<tr>
<td>Temperature accuracy</td>
<td><1 °C</td>
</tr>
<tr>
<td>Control Unit</td>
<td>CD-402CU LED display. 144*144mm. Ethernet</td>
</tr>
<tr>
<td>Electronic unit</td>
<td>JB70D21. Dimensions: 115115180mm</td>
</tr>
<tr>
<td>Com. with control unit</td>
<td>LAN</td>
</tr>
<tr>
<td>NMEA sentences transmit</td>
<td>VBW, VLU, MTW, VHW, XDR, ALR</td>
</tr>
<tr>
<td>NMEA sentences receive</td>
<td>ACK, DDC, VTG, ZDA, GGA</td>
</tr>
<tr>
<td>Pulse output</td>
<td>Yes</td>
</tr>
<tr>
<td>Analog output</td>
<td>4-20mA and 0-10V</td>
</tr>
<tr>
<td>Alarm</td>
<td>Speed alarm, Power failure alarm, function alarm</td>
</tr>
<tr>
<td>Power supply</td>
<td>AC 115 - 230 V 50/60 Hz, and/or DC 24 V. Max 60W</td>
</tr>
<tr>
<td>Sensor</td>
<td>DL1. 60mm</td>
</tr>
<tr>
<td></td>
<td>Cable outer diameter 11mm</td>
</tr>
<tr>
<td></td>
<td>Cable minimum bending radius 25mm</td>
</tr>
<tr>
<td>Sea Valves</td>
<td>Single bottom</td>
</tr>
<tr>
<td></td>
<td>Double bottom</td>
</tr>
<tr>
<td>Tanks</td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td>Aluminium</td>
</tr>
<tr>
<td>IP rating</td>
<td>IP22 Control unit</td>
</tr>
<tr>
<td></td>
<td>IP22 Electronic unit</td>
</tr>
<tr>
<td></td>
<td>IPX7 Sensor unit</td>
</tr>
<tr>
<td>Accessories</td>
<td>IR300 Speed repeater.</td>
</tr>
<tr>
<td></td>
<td>Dimming Control.</td>
</tr>
<tr>
<td></td>
<td>CD401MR-SB Multirepeater.</td>
</tr>
<tr>
<td>Classification</td>
<td>IMO</td>
</tr>
</tbody>
</table>

Date: 2018-05-29
IEC61162-2 HIGH SPEED NMEA COMMUNICATION
This standard requires a common signal ground between system requiring extra circuitry for isolation on the receiver side. This unit does not have this circuitry, and cannot fullfill the receiver part of the standard, however by connecting the common signal ground to pin 10 marked Common, the transmitting part of the standard is fullfilled.

IEC61162-450 ETHERNET COMMUNICATION
The system is defined as ONF2 and SF,NF as per the standard (§4.1). This means it will send and receive encapsulated messages as defined in these standards, but has in addition web pages with a separate IP address. The -450 standard requires the UdP multicast messages to have a unique identifier, and transmission group. See “” on page 40
The system can be connected to a standard network using CAT 5 or better cables, the system will load the network with a maximum datarate of 20Kb/s (typical 3Kb/s), and will operate a network loads of up to 20 Mb/s or 10000 datagrams per second. The maximum number of datagrams directed to the unit must not exceed 2500/second (normal usage is 3-5).
Error codes are logged if the formats are not accoring to specification. These messages can be retrieved and viewed using the “Upgrading and external diagnostics of the system” on page 36.
The CD401CU must be paired to the JB70D1 unit, this to make sure the CD401CU talks only to one electronic unit on the network. To do this the user must enter the SFI ID of the JB70 unit into the web page of the CD401CU. For example VD0133, if the unit is only to have 1 control unit, then the control unit SFI ID can be entered into the JB70 unit. If no SFI is entered into the JB70D1, then any CD401CU with the correct destination SFI will work, allowing multiple control units.
APPENDIX 1: MISC DRAWINGS

Console mounting order:
A. Make a cut out in the Console (1): 125 x 125 (4.921 x 4.921)
B. Remove the mounting bracket (2)
C. Unscrew the 4 screws in the frame (3) one in each corner and remove the frame.
D. Put the Monitor (4) in the cut out and mark the 4 centerpoints for the Drill in the Console (1)
 (The drilling hole diam depends on thickness and material in the Console)
E. Use Pan head screws DIN 7981 Diam: 2.9 (0.114). Length depends on the Console thickness.
F. Finally put on the frame (3). Make sure that the screwheads correspond with the cut outs in the frame.
Product Datasheet

JB70D1-SA ELECTRONIC UNIT FOR DL1

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>JB70D1-SA</td>
</tr>
<tr>
<td>To be used with</td>
<td>CD401CU-XX, DL130B-XX Control Unit Compact with LAN Log Sensor for SB/DB-100-SA Doppler, 25 m</td>
</tr>
<tr>
<td>The junction box contains</td>
<td>JB70-ZA, M-KIT-JB70XX Electronic Unit for DLX Mounting Kit for JB70</td>
</tr>
<tr>
<td>Power</td>
<td>115-230 VAC, 24VDC, 24VDC (backup) Max 60W</td>
</tr>
<tr>
<td>Interfaces</td>
<td>NMEA 0183, IEC61162-1, 4 output, 1 input, Auxiliary x 3 output, 2 input relay x 1 analogue 1x 0-10V, 1x 4-20mA, NMEA outputs can be used for IEC61162-2 Auxiliary can be designated to alarm, pulse, spd warning relay designated to function and powerfailure alarm 2 wire voltage supplied</td>
</tr>
<tr>
<td>LAN</td>
<td>IEC 61162-450 fully implemented web page setup Connection to CD402CU via LAN or NMEA configurable web pages for setup and runtime functions</td>
</tr>
<tr>
<td>Options</td>
<td>Type approved Switch Moxa produced 5 way switch</td>
</tr>
<tr>
<td>IP rating</td>
<td>IP 22</td>
</tr>
<tr>
<td>Weight</td>
<td>1.2 kg</td>
</tr>
<tr>
<td>Packaging dimensions / weight</td>
<td>30.5 x 21.5 x 21 / 1.7kg</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>SKIPPER Electronics AS, Norway</td>
</tr>
</tbody>
</table>

Date: 2018-05-29

Page 42 of 48
Product Datasheet

DL1ST-XX LOG SENSOR FOR TANK

DOPPLER, 40 m

Specifications

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL1ST-XX</td>
<td>Log sensor for Tank Doppler, 40 m</td>
</tr>
</tbody>
</table>

| To be used with | DL1
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DL1ST-Multi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Sensor contains the following main parts</th>
</tr>
</thead>
</table>
| TC-2000
| DL1S-540-ZA |
| Tank adaptor for sensor EML224ST-XD
| Doppler sensor moulded 40 m cable |

Accuracy	0.2 km or 2 % whichever is greater
Speed Resolution	0.01 km
Max speed	+/- 50 km
Temperature accuracy	1 deg
Temperature resolution	0.1 deg
IP rating	IP 68
Depth rating	5 bar
Operating temperature	-15 to -55 deg
Outputs	1 NMEA (Proprietary formats)
Input	1 NMEA (Proprietary formats)
Power input	Nom. 24V (13V to 32V) 8W
Weight	9 kg
Manufacturer	SKIPPER Electronics AS, Norway

Dimensions:

- Diameter: 32 cm
- Diameter of cable: 11 mm
- Length: 44 cm
- Height: 45 mm
- Inner diameter: 11 mm
- Outer diameter: 11 mm
- Length: 355.3 mm

Skipper Electronics AS

Erebakkeveien 150
P.O. Box 151, Manglerud
0612 Oslo, Norway

E-mail: support@skipper.no
Tel: +47 23 30 22 70
Fax: +47 23 30 22 71
Co. reg. no: NO.965378847 - MVA
www.skipper.no

Date: March 2013
Edition: 00032013
Product Datasheet

DL1SG-XX LOG SENSOR FOR SB/DB SEA VALVE, 40 m

Specifications

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL1SG-XX</td>
<td>LOG SENSOR FOR SB/DB SEA VALVE, 40 m</td>
</tr>
<tr>
<td>DL1-Multi</td>
<td>hold for later</td>
</tr>
</tbody>
</table>

To be used with

- DL1
- DL1-Multi

The Sensor contains

- DB-1023
- DL1S-715-ZA
- ZOA-01018
- ZOA-01150

- Adapter for EMI SB/DB 60 mm Sea valve
- Doppler sensor moulded 40 m cable
- Spring washer stainless M5 DIN 127B A4
- Allen Screw M5x18 DIN912 A4 70

Accuracy

- 0.2 km or 2% whichever is greater

Speed Resolution

- 0.1 km

Max Speed

- +/- 50 km

Temperature Accuracy

- 1 deg

Temperature Resolution

- 0.1 deg

IP Rating

- IP 66

Depth Rating

- 6 bar

Operating Temperature

- -15 to +55 deg

Outputs

- 1 x NMEA (Proprietary format)

Input

- 1 x NMEA (Proprietary format)

Power Input

- Nom. 24 V (15 V to 32 V) & W

Weight

- 5 kg

Manufacturer

- SKIPPER Electronics AS, Norway
ALTERNATIVE NMEA COMMUNICATION CD402 TO JB70D1

If the LAN port is required for output communication to other systems and a switch is not available, it is possible to connect the CD402CU via NMEA communications. In this case the connector on the rear of the CD401 NMEA out should be connected to NMEA IN in the JB70D1-XX unit, and the CD401CU-XX NMEA IN should be connected to the -AUX SEN OUT connector. The option CD401 communication should be set to NMEA-SENS.

On the JB70D1.

<table>
<thead>
<tr>
<th>Pin 1</th>
<th>Pin 2</th>
<th>Pin 3, 4</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>+ pin 1</td>
</tr>
</tbody>
</table>

Alternative CD401CU connection

<table>
<thead>
<tr>
<th>CD401 CU connection</th>
<th>Input port:</th>
<th>Output port:</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sensor IN</td>
<td>Sensor OUT</td>
<td>NMEA OUT</td>
</tr>
<tr>
<td>NMEA IN</td>
<td>NMEA OUT</td>
<td>NMEA OUT</td>
</tr>
<tr>
<td>Ethernet (UDP/IP)</td>
<td>Ethernet (UDP/IP)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Multiple CD401 CU may be active on the network simultaneously (working in parallel).
WARRANTY AND UTILIZATION

WARRANTY:
• SKIPPER Electronics AS gives 12 months limited guarantee on all deliveries from SKIPPER Electronics AS, Norway.

• Please note that if the equipment is delivered by a third party, the third party’s warranty conditions may apply.

• All warranty request should be sent to the local supplier of the equipment.

UTILIZATION:
• This equipment is not to be disposed in normal waste, but be handled in accordance with applicable waste disposal regulations in the country where the equipment is used.

USER MANUAL:
• For more information of usage and display setup, refer to the User manual (DM-M005). It is available on the SKIPPER web page www.skipper.no.