TABLE OF CONTENTS

Overview. 5

Termlnology. Terms used in this manual 6

Units 6

Abbreviations 6

Introduction. The Multi Repeater 7

Chapter 1. Physical installation 8

The Dimming Inputs 9

Chapter 2. Setting up and using the Compact Display 10

Principles 10

Runtime screens 10

Menu screens 10

Shifting screens 10

Activating the runtime screens 11

Menu Diagram 12

Setup of inputs 14

Changing of the baud rate 14

Demo mode 14

Master Reset (Factory Default Settings) 14

Chapter 3. Configuring the screens 15

Runtime screens 15

Accepted NMEA sentences 15

Configuration and operational screen 16

Configuring of screens 16

Depth 17

Speed 18

Distance 19

Heading 20

Rotation 21

Pitch and Roll 22

Wind 23

Temperature 25

Drive 26

Clock/UTC 27

Display Dimming Control 27

Auxillary 28
Error Handling

Chapter 4. Maintenance

- Routine maintenance
- Checking your version
- Firmware upgrade
- Mounting the Multi Repeater facing aft.

Appendix 1.

- Specifications and mechanical drawing
- System specification
- Display
- inputs/outputs
- Mechanical dimensions

Appendix 2.

- Accepted NMEA 0183 sentences Summary
- Detailed description

Appendix 3.

- Other options with the Multi Repeater
- Compact options
- Changing the system/adding options

Appendix 4.

- Current

Appendix 5.

- Sending the system for repair

Notes:
OVERVIEW.

Terminology
Terms, units and abbreviations used in this manual.

Introduction
This part introduces you to the elements of the Multi Repeater (MR) system.

Chapter 1 – Physical installation
Correct installation of the system will ensure problem free service for many years. This section explains the main steps to get your system working.

Chapter 2 – Setting up and using the Compact Display
The Compact display is a flexible intuitive display allowing data to be displayed in a user friendly way. It is also a primary system and can be integrated into the navigation system as regulation stipulate. This chapter explains how to set up the unit.

Chapter 3 – Operation
Once the system is installed and operational, the user can change the screen to show the data of interest at any time. This section explains the operation of the system.

Chapter 4 – Maintenance
It is a good idea to verify your systems performance from time to time. This chapter describes how to check interfaces and other issues. In the event of malfunction, this is a good place to start for trouble shooting.

Appendix 1 – Specifications and drawings
Here you will find more details of how the system works and which factors are important to know when using it.

Appendix 2 – Accepted NMEA sentences
This section describes the inputs accepted by the compact display in this configuration

Appendix 3 - Sending the system for repair
In the unfortunate case of a failure that requires a factory repair, the described return sequence should be followed.

Appendix 4 - Other options with the Multi Repeater
The Compact can be used in a number of different system both as a repeater and a speed log. This section explains what is available and how to activate the options.
TERMINOLOGY. Terms used in this manual

UNITS
Unless otherwise stated, all values shown on the display are as follows:

<table>
<thead>
<tr>
<th>Units</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth Meters</td>
<td>Meters</td>
</tr>
<tr>
<td>Speed Nautical Miles (knots)</td>
<td>Nautical Miles (nm)</td>
</tr>
<tr>
<td>Distance Nautical Miles (nm)</td>
<td>Nautical Miles (nm)</td>
</tr>
<tr>
<td>Heading Degrees (0 – 359.9°)</td>
<td>Degrees (0 – 359.9°)</td>
</tr>
<tr>
<td>Rotation Degrees per minute (%/min)</td>
<td>Degrees per minute (%/min)</td>
</tr>
<tr>
<td>Pitch and Roll Degrees (0 – 359.9°)</td>
<td>Degrees (0 – 359.9°)</td>
</tr>
<tr>
<td>Wind Nautical Miles (knots)</td>
<td>Nautical Miles (nm)</td>
</tr>
<tr>
<td>Wind Meter per seconds (m/s)</td>
<td>Meter per seconds (m/s)</td>
</tr>
<tr>
<td>Wind Beaufort (Bft)</td>
<td>Beaufort (Bft)</td>
</tr>
<tr>
<td>Temperature Degrees Celcius (°C)</td>
<td>Degrees Celcius (°C)</td>
</tr>
<tr>
<td>Speed Revolutions Revolutions per minute (rev/min)</td>
<td>Revolutions per minute (rev/min)</td>
</tr>
<tr>
<td>Rudder Angle Degrees (0 – 359.9°)</td>
<td>Degrees (0 – 359.9°)</td>
</tr>
<tr>
<td>Propeller Pitch Percentage of maximum (0 -100 %)</td>
<td>Percentage of maximum (0 -100 %)</td>
</tr>
<tr>
<td>Clock /UTC hh:mm (00:00 – 23:59)</td>
<td>hh:mm (00:00 – 23:59)</td>
</tr>
</tbody>
</table>

ABBREVIATIONS
In addition the following symbols are used on the Runtime screens:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>P</sub></td>
<td>Daily trip (in nm)</td>
</tr>
<tr>
<td>T<sub>L</sub></td>
<td>Total measured distance travelled (in nm)</td>
</tr>
<tr>
<td>°</td>
<td>Degrees</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>←↑→↓</td>
<td>Direction</td>
</tr>
</tbody>
</table>
INTRODUCTION. The Multi Repeater

The SKIPPER Multi Repeater allow important values from a variety of systems to be displayed anywhere on the vessel. The Compact is unique in its simple and flexible way to display vital data in almost all conditions, from no light to bright sunlight. In addition, it is classed to IP 56 allowing it to be mounted outside and used in any conditions. The unit is a standard 144 mm format allowing it to be mounted in tight spaces or overhead.
CHAPTER 1. Physical installation

The Multi Repeater CD401MR is a stand alone unit and does not require additional circuitry. It should be supplied by a 24 V (19 V-36 V) 25 W DC supply and the cabling of the system is as per diagram below. The unit is supplied with 2 m of cable (12 core). This can be extended without problem. Only the wires in use need extending.

Note: Mounting drawing is available in Appendix 1.

![Image of CD401MR display](image)

<table>
<thead>
<tr>
<th>Colour Codes</th>
<th>Pin no.</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grey</td>
<td>12</td>
<td>NMEA2 OUT B</td>
</tr>
<tr>
<td>Turquoise</td>
<td>11</td>
<td>NMEA2 OUT A</td>
</tr>
<tr>
<td>Pink</td>
<td>10</td>
<td>NMEA1 OUT B</td>
</tr>
<tr>
<td>Orange</td>
<td>9</td>
<td>NMEA1 OUT A</td>
</tr>
<tr>
<td>Violet</td>
<td>8</td>
<td>DIM DWN B</td>
</tr>
<tr>
<td>Brown</td>
<td>7</td>
<td>DIM DWN A</td>
</tr>
<tr>
<td>Black</td>
<td>6</td>
<td>DIM UP B</td>
</tr>
<tr>
<td>White</td>
<td>5</td>
<td>DIM UP A</td>
</tr>
<tr>
<td>Yellow</td>
<td>4</td>
<td>NMEA IN B</td>
</tr>
<tr>
<td>Green</td>
<td>3</td>
<td>NMEA IN A</td>
</tr>
<tr>
<td>Blue</td>
<td>2</td>
<td>0 V</td>
</tr>
<tr>
<td>Red</td>
<td>1</td>
<td>+24 V</td>
</tr>
</tbody>
</table>
THE DIMMING INPUTS

Pulses of at least 60 ms on the dimming up and dimming down cables will cause the dimming to change by one level. The inputs are optocoupled and therefore require an external voltage to operate, (5 Volt -24 Volt (Typically 5/12/24 Volt)).
CHAPTER 2. Setting up and using the Compact Display

PRINCIPLES
The Compact Display is a flexible dot matrix LED display designed to display navigation data. The Multi repeater can be user programmed to show most kinds of numerical data from NMEA messages. It can also be used as a primary sensor display for speed logs showing the speed values produced by the sensor. The Compact with its JB60CD box meets all the requirements of a primary device both functionally and electrically. On its own it meets the requirements as a repeater. The Compact has three user definable alphanumeric displays, each allowing up to 4 lines to be displayed. When the device is used as a primary device, some of these screens will be fixed.

RUNTIME SCREENS
The Compact Display starts up in runtime mode. By pressing the MENU button, the preset runtime screens can be selected. The unit can be dimmed in any of the runtime screens using the UP and DOWN buttons.

MENU SCREENS
To change the setup of the Multi Repeater, the user must simultaneously press MENU and SET buttons. This will give access to a menu system allowing the user to scroll up and down the sub menus and functions using UP, DOWN and SET buttons to select. To move back up a menu, the MENU button must be pressed. The middle underlined line is the selected line. The other lines are dimmed.

The menu structure is shown in the MENU DIAGRAM. The menus are product dependant, only the relevant menus are accessible. Some menus are available in all setups.

Press both MENU and SET buttons to activate the menus. Press and hold MENU to return to runtime screen

SHifting SCREENS
The system can be made to shift, with a five second period, between the activated screens. Pressing MENU will pause this function, and holding MENU will reactivate it.
Activating the Runtime Screens

The system has three user preset runtime screens (SCR1, SCR2, SCR3). The Screen Menu allows the user to configure and choose which runtime screens to be included in normal operation. UP and DOWN buttons will scroll to the available screens. By using the SET button, the user can control each individual screen to ON, OFF or SHIFTING. Screens set to ON are available to be displayed by pressing the MENU button. Screens set to OFF will not be displayed. Screens set to SHIFTING will be shown on the display periodically. Each shifting runtime screen will be displayed for 5 seconds.

If any screens are configured to SHIFTING, these selected screens will automatically start displaying periodically. The shifting of these preset runtime screens are stopped if the MENU button is pressed in runtime mode. By holding down the MENU button longer, the shifting will be started again.
Menu Diagram

Screens (SCRN)
- Select runtime screens
 - ▲ Next sub menu
 - ▼ Prev sub menu
 - SET select sub menu
 - MENU return

Screen Configuration (CONFG)
- Change the messages being displayed on each user screen
 - ▲ Next sub menu
 - ▼ Prev sub menu
 - SET select sub menu
 - MENU return

Screen Configuration (CONFG)
- ▲ Change display message
 - ▼ Change display message
 - SET move to next position on screen
 - CFG 1
 - CFG 2
 - CFG 3
Menues, scrollable menu system
Accessed with SET and MENU pressed simultaneously
▲ Next sub menu
▼ Prev sub menu
SET select sub menu
MENU return

System Setup (SETUP)
Setup the system parameters
▲ Next sub menu
▼ Prev sub menu
SET select sub menu
MENU return

Diagnostics Advanced Setup (DIAG)
Diagnose and adjust less used parameters
▲ Next sub menu
▼ Prev sub menu
SET select sub menu
MENU return

Baud Settings (NMEA)
▲ Higher value
▼ Lower value

Code option activation (CODE)
Shows serial no
Code number with active digit underlined
▲ Increment underlined digit
▼ Move to next digit
SET activates the displayed code

NMEA output
Select NMEA outputs
▲ Move to next message
▼ Move to previous message
SET turn on/off current message
IIVDR
PSKPVDR

Upgrade mode (UPGRD)
Allow the system to upgrade from cable

Demo (DEMO)
▲ Increment mode
▼ Decrement mode
MENU accept mode
Mode 1 = dynamic
Mode 2 = static
Off

Splash screen (INFO)
▲ Dimming up
▼ Dimming down
Option info
Software version

Self Tests (TEST)
▲ Next test
▼ Previous test
SET starts selected test
SETUP OF INPUTS
The system will allow many NMEA formats to be displayed. The system will automatically update recognized formats.

CHANGING OF THE BAUD RATE
The NMEA (IEC61162-1) standard is 4800 baud. Some vessels run with higher baud rates. 4800, 9600, 19200, 38400, 57600 and 115200 baud rates can be selected in the baud screen of the setup menu.

DEMO MODE
A demo mode is available, and can be activated with MENU button in the diagnostics menu. Two modes are available.

- **Mode 1** is a **dynamic** demo mode taking the present value as the start point and slowly varying all the available values.
- **Mode 2** is a **static** mode taking the present values and keeping them active.
- **Mode 3** is a **fixed speed** longitudinal 5 kn, transversal 1 kn.

When the demo mode is active, alarms will be disabled, and the screen will indicate the demo state with a blinking S in the upper right corner. The user can turn off the demo mode from the demo screen, or by recycling the power. The demo mode will turn off automatically after 10 hours.

MASTER RESET (FACTORY DEFAULT SETTINGS)
The factory default settings can be restored by performing the following operations:
1. Select CODE in diagnostic (DIAG) menu.
2. Press the SET button (**Note**: Do not change code value).

The unit will now restart with factory default settings.
CHAPTER 3. Configuring the screens

RUNTIME SCREENS
The unit starts up in runtime mode. By pressing the MENU button, the preset runtime screens (SCR1, SCR2, SCR3) can be selected. The unit can be dimmed in any of the runtime screens using the UP and DOWN buttons. If Trip/Total are selected as a displayed parameter, they can be toggled using the SET button. If wind speed is selected as a displayed parameter, the unit can be toggled between knots, m/s, or Beaufort using the SET button.

ACCEPTED NMEA SENTENCES
When using the Compact Display as a Multi Repeater, the display could be user programmed to show the most commonly used NMEA 0183 (IEC61162) messages for:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Below surface, keel and transducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>Over ground and through water (longitudinal, transverse, aft and relative)</td>
</tr>
<tr>
<td>Distance</td>
<td>Total/trip for both ground and water</td>
</tr>
<tr>
<td>Heading</td>
<td>True, magnetic and relative</td>
</tr>
<tr>
<td>Rotation</td>
<td>Rate of turn and direction</td>
</tr>
<tr>
<td>Pitch and roll</td>
<td>In degrees</td>
</tr>
<tr>
<td>Wind</td>
<td>Speed and direction (true, magnetic and relative)</td>
</tr>
<tr>
<td>Temperature</td>
<td>Water and air</td>
</tr>
<tr>
<td>Drive</td>
<td>RPM (Revolutions Per Minute), propeller pitch and rudder position</td>
</tr>
<tr>
<td>Clock</td>
<td>UTC (Universal Time Coordinated), local time and Expected Time of Arrival (ETA)</td>
</tr>
<tr>
<td>Dimming</td>
<td>Display dimming</td>
</tr>
<tr>
<td>Auxilliary</td>
<td>User defined NMEA messages</td>
</tr>
</tbody>
</table>

A summary of supported NMEA sentences is listed in Appendix 2.
CONFIGURATION AND OPERATIONAL SCREEN

The programming of parameters to show on the screen is very flexible. It is advise to add leading text before the parameters and not mixing to many different messages. A typical configuration is to show two related parameters on the screen simultaneously with leading text. Arrows are added to some parameters for better readability. Press MENU and SET button simultaneously to enter the main menu screen, select CONFG and then select wanted screen (CFG1, CFG2 or CFG3) to start configure wanted screen. See chapter 2 ”Setting up and using the Compact Display” on how to program the display to show wanted information on the screen.

CONFIGURING OF SCREENS

The 3 user programmable screens can be set up using the Config (CONFG) menu. This submenu allows the user to select one of the three screens, and on entering the Config screen, the user can change the data type to be displayed in each of the 4 screen positions. UP and DOWN will change the data type, SET will move to the next screen position.

Placing TXT in the bottom 4th line or 3rd and 4th line will cause the data to spread out showing fewer data points. The system will not allow you to mix speed data from different sources on the same screen. Having 2 TXT lines after each other will also rearrange the positioning. (See examples on next page).

The non-active parameters will continue showing the dimmed present data, when not selected. Some combinations of data are not allowed, as they may cause confusion. These will be automatically corrected. Note that the leading text is identical for some data, and information about talkers are ignored. Regulations require the user to be able to identify which data they are looking at. This can be achieved by using the TXT function or a sticker on the unit.
Depth

The NMEA sentences DPT, DBS, DBT, DBK and PSKPDPT are all supported for receiving information about the depth. The use of the DPT sentence is recommended when available. Depth values in feet and fathoms (from DBK, DBT and DBS) are converted to meters. The screen will display either DEPTH-S (depth below surface), DEPTH-T (depth below Transducer) or DEPTH-K (depth below keel) depending of the received sentences (DBS, DBT or DBK) or the offset value in DPT. The proprietary sentence PSKPDPT will also indicate the transducer location with an arrow in the text line.

The depth is always displayed in meters. Depth values below 10 meters are displayed with 2 decimals, depth values between 10 and 100 meters are displayed with 1 decimal and depth above 100 meters are displayed without decimals.

Maximum depth value to be displayed is 9999 meters.
Speed

The NMEA sentence VBW is supported for receiving information about the speed through water and speed over ground (bottom) for longitudinal, transverse and transverse aft. The NMEA sentences VHW and VTG are supported for receiving information about relative speed.

- An arrow, indicating the direction, is added in front of the value for speed values from the NMEA sentences VBW.
- The relative speed through water is fetched from the NMEA sentence VHW.
- The relative speed over ground is fetched from the NMEA sentence VTG.
- Speed value in km/h is converted to knots if speed value in knots is not available.
- Relative speed is displayed without arrows.
- All speed values are displayed in knots with one decimal. Maximum speed value to be displayed is +/- 99.9 knots.

The Multi Repeater will accept the NMEA sentence VMXDR to change the direction of the speed through water. Receiving the following NMEA sentence will change the direction of the STW:

```
$VMXDR,A,180,D,SPDD*hh<CR><LF>
```

An arrow symbol is added in front of the STW text to indicate that the speed direction is reversed. Receiving the following NMEA sentence will change the direction of the STW back to normal:

```
$VMXDR,A,0,D,SPDD*hh<CR><LF>
```

The VMXDR sentence must be valid together with the VBW sentence.
The Compact Multi Repeater Backwards (CD MB) will display the arrow symbol in both directions if VMXDR with speed direction information is received. Note that the Compact Multi Repeater Backwards already displays the STW speed in opposite direction, so receiving information about reverse speed will again turn the speed direction with 180 degrees.

Screen with arrow symbol in reverse direction:

Distance
The NMEA sentence VLW are supported for receiving information about distances. The Trip/Total parameters for either water distance or ground distance can be toggled using the SET button.

The distance values are always displayed in nautical miles and the value will wrap around after reaching the maximum value of 99999. Total/trip values below 10 are displayed with two decimals, values between 10 and 1000 with one decimal and values above 1000 are displayed with no decimals.

Configuration screen:

Runtime screen:
Heading

The NMEA sentences VHW, VTG, THS, HDT, HDM and HDG are all supported for receiving information about the heading. It is recommended to use THS instead of HDT and HDG instead of HDM when available. The deviation and variation parameters in HDT are ignored.

If the same heading parameter is received from different talkers, the heading parameter will be prioritized as shown below:

2. GPS (GP).
3. Compass, magnetic (HC).
4. Others.

An arrow is added on the text line to indicate which direction the bow turns. If no change in heading from previous value, no arrow is displayed.

The heading value is always displayed with one decimal. Legal range for the heading to be displayed, are values in the range from 0 to 359.9 °.
Rotation

The NMEA sentence ROT is supported for receiving information about the rotation. A steady arrow is added on the text line to indicate which direction the bow turns.

- A positive received value indicates that bow turns to starboard and an arrow to the right is displayed.
- A negative received value indicates that bow turns to port and an arrow to the left is displayed.
- A value of zero indicates no rotation and no arrow is displayed.

Values below 99.9 are displayed with one decimal. Values above 100 are displayed with no decimals. Maximum value to display is +/- 999°/min.

Configuration screen:

![Configuration screen image]

Runtime screen:

![Runtime screen image]
Pitch and Roll

The NMEA sentence XDR, version B is supported for receiving information about the Pitch and Roll.

- A positive received value for Pitch indicates that the bow is up and negative if bow is down.
- A positive received value for Roll indicates that port is up and starboard is down, a negative value indicates that starboard is up and port is down.

Values below 10 degrees are displayed with two decimals and values above 10 degrees with one decimal. Maximum value to be displayed is +/- 359.9°.

Configuration screen:

Runtime screen:
Wind

The NMEA sentences MWV, VWR, VWT and MWD are all supported for receiving information about the wind speed and direction. MWV is recommended instead of VWR and VWT, when available. All wind speed units are accepted (knots (N), m/s (M) and km/h (K)) and converted to wanted speed units to display on the screen. Speed units on the display may be toggled between kn (knots), m/s and Bft (Beaufort) by pressing the SET-button.

A graphical representation of the wind angle is displayed if the following parameters are selected:

- TXT must be selected for the first two parameters.
- One wind angle must be selected.
- Corresponding wind speed from the same NMEA sentence could be selected. Otherwise TXT must be selected.
- The wind angle is represented by an arrow on the screen.

See chapter 2 ”Setting up and using the Compact Display” for details how to set up the screen.

The range of values to be displayed, are:
- Speed: 0 - 99.9 knots.
- Heading: 0 – 359.9°.
Wind. (continued from previous page):

Config. screen:

Runtime screen:

SET button has been pressed for toggling the speed units to m/s.

Configuration screen:

Graphical representation

Runtime screen:

SET button has been pressed for changing between knots, m/s and Beaufort units.
Temperature

The NMEA sentences MTA, MTW and MDA are supported for receiving information about the air (MTA or MDA) and water (MTW) temperatures. Air temperature from MDA is used if data from MTA is not available.

Temperatures are displayed in degree Celsius. Values below 10 degrees are displayed with two decimals and values above 10 degrees with one decimal. The maximum/minimum temperatures to be displayed are +/- 99.9 °C.

Configuration screen:

![Configuration Screen Image]

Runtime screen:

![Runtime Screen Image]
Drive

- The NMEA sentence RPM is supported for receiving information about the speed revolutions (rev/min) and propeller pitch (% of maximum).
- The NMEA sentence RSA is supported for receiving information about the rudder angle.

The speed revolution values below 999.9 is displayed with one decimal and values above 1000 is displayed without decimals. Propeller pitch values below 10 degrees are displayed with two decimals and values above 10 degrees with one decimal.

- Max./min. value to be displayed for speed revolution is +/- 9999 rev/min.
- Max./min. value to be displayed for propeller pitch is +/- 100 %.
- Max./min. value to be displayed for rudder angle is +/- 359.9 °.

Configuration screen:

Runtime screen:
Clock/UTC

The UTC is fetched from either of the NMEA sentences ZTG, ZDA, GGA or RMC, prioritized in the same order. The NMEA sentences ZDA is used for receiving information about the local time. The NMEA sentences ZTG is used for receiving information about expected time of arrival. Maximum offset for displayed time of ”Expected Time of Arrival” is 24 hours. All time values are displayed with the format hh:mm, where hh are hours and mm are minutes.

Display Dimming Control

The brightness of the display can be controlled by the NMEA sentence DDC. Note that the brightness also can be controlled by buttons on the display and remote dimmer control (IR30DIM). Both the Brightness Percentage and Display Dimming Preset are supported in the NMEA sentence DDC. (See Appendix 2).
Auxillary

A proprietary NMEA sentence is supported which allow the user to define up to 4 additional parameters to be displayed from any specified NMEA sentence(s). This proprietary NMEA sentence has the following format:

```
$PSKPPCCPNMEA, <Auxillary number>,<Header>,<Data Field number.>,<Type>,
< Status field number >,< Status valid character >,<Text>*hh<CR><LF>
```

Example: Fetch a proprietary NMEA sentence for roll & pitch and display the values: $PPPRP,<a>,<CR><LF> where <a> is roll data parameter and is pitch data parameter.

Fetch also the parameters for both port and starboard rudder angle from the following NMEA message: $SGRSA,<a>,A,,A<CR><LF> where <a> is starboard rudder sensor and is port rudder sensor and ’A’ is status for each corresponding data field parameter. The following NMEA sentences must be sendt to the Compact display to accept these parameters:

```
$PSKPPCCPNMEA,1,PPPRP,0,8,,ROLL<CR><LF>
$PSKPPCCPNMEA,2,PPPRP,1,8,,PITCH<CR><LF>
$PSKPPCCPNMEA,3,SGRSA,0,8,1,A,SRUD<CR><LF>
$PSKPPCCPNMEA,4,SGRSA,2,8,3,A,PRUD<CR><LF>
```

Select the AUX1 in the meny to display the roll parameter, select the AUX2 in the meny to display the pitch parameter, select AUX3 in the menu to display the starboard rudder angle and AUX4 in the menu to display the port rudder angle.

Configuration screen:

Runtime screen:

Received NMEA sentence:

- $PPPRP,12.31,1.22
- $SGRSA,3.4,A,0.2,A
Error Handling

All parameters within each NMEA sentences are checked for checksum, legal range, validity and timeout.

Bad checksum (- - - - -)
If the Checksum Field (*hh) is present, the value is checked. The screen will indicate bad checksum by displaying minus signs instead of the value (- - - - -). If no Checksum Field is present, no checking is performed.

Illegal range and validity (.)
Some values must be within a range. If a value is out of range, the following exception is performed:

- **Wrap around**: The displayed value will start from zero again after reaching the maximum/minimum value (Trip values, only).
- **Limited value**: The maximum or minimum value will be displayed (Speed and temperature values).
- **Illegal value**: The value has no meaning (ex. heading values above 360°). The screen will indicate illegal value by displaying dots instead of the value (. . . .).

A Null field is a field in the NMEA sentence without any character between two delimiter characters. A Null field indicates that the value is unreliable or not available. The screen will indicate a Null field by displaying dots instead of the value (.) if no value is received within the timeout timeframe.

Some parameters has a status parameters associated with them (A = data valid, V = data invalid). The screen will indicate an invalid parameter by displaying dots instead of the value (.) if no new valid value is received within the timeout timeframe.

Timeout (ERROR)
The timeout value for each parameter within each NMEA sentence is 10 seconds. The screen will indicate timeout by displaying an error message (ERROR) if no new value is received within the timeout timeframe.
CHAPTER 4. Maintenance

ROUTINE MAINTENANCE
No maintenance is required. The screen can be cleaned with a soft cloth.

CHECKING YOUR VERSION
If the Info screen is activated on the run screens, the system type and firmware version can be read from there. Otherwise the same screen can be obtained in the diagnostics menu. The system type will be one of the following:

<table>
<thead>
<tr>
<th>System Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD E1</td>
<td>Compact display EML 1 Axis.</td>
</tr>
<tr>
<td>CD E2</td>
<td>Compact display EML 2 Axis.</td>
</tr>
<tr>
<td>CD EB</td>
<td>Compact display EML 2 Axis backwards.</td>
</tr>
<tr>
<td>CD LR</td>
<td>Compact display Log Repeater.</td>
</tr>
<tr>
<td>CD MR</td>
<td>Compact display Multi Repeater.</td>
</tr>
<tr>
<td>CD MB</td>
<td>Compact display Multi Repeater backwards.</td>
</tr>
</tbody>
</table>

The system will be locked to one of these setups, but can be changed to one of the other systems (with an additional cost) using a code (see Appendix 4).

FIRMWARE UPGRADE
The system is undergoing continuously improvements, and periodically new firmware will be released. A chip can be supplied (with an additional cost) with the new software. This is changed by removing the backplate of the Compact display.

MOUNTING THE MULTI REPEATER FACING AFT.
The Compact Display could also be set up to operate in ”Multi Repeater, Backwards” mode. In this mode all speeds are in opposite direction. See the section ”MAINTENANCE” on how to change the system setup. The parameters in ”Multi Repeater, Backwards” mode will be replaced according to the following:

\[
\begin{align*}
STWWL &= - STWWL \\
STWWT &= - STWWA \\
STWWA &= - STWWT \\
SOGBL &= - SOGBL \\
SOGBT &= - SOGBA \\
SOGBA &= - SOGBT
\end{align*}
\]
APPENDIX 1.
SPECIFICATIONS AND MECHANICAL DRAWING

SYSTEM SPECIFICATION

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>28 x 30 pixel, Alphanumeric LED (red). With dimming.</td>
</tr>
<tr>
<td>Languages</td>
<td>English</td>
</tr>
<tr>
<td>Accessories</td>
<td>Dimming control.</td>
</tr>
<tr>
<td>Classification</td>
<td>IMO MED B.</td>
</tr>
<tr>
<td>Service</td>
<td>Available in most major harbours, world-wide through extensive dealer network. See www.skipper.no for further information.</td>
</tr>
</tbody>
</table>

DISPLAY

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (display)</td>
<td>1.3 kg.</td>
</tr>
<tr>
<td>Cable length</td>
<td>2 m (can be extended).</td>
</tr>
<tr>
<td>Compass safe distance (min)</td>
<td>30 cm.</td>
</tr>
<tr>
<td>User adjustable screens</td>
<td>3</td>
</tr>
<tr>
<td>Parameters per screen</td>
<td>2 with text, 3 with single text line.</td>
</tr>
</tbody>
</table>

INPUTS/OUTPUTS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outputs</td>
<td>2 x NMEA (IEC61162-1) (2007).</td>
</tr>
<tr>
<td>Inputs</td>
<td>1 x NMEA (IEC61162-1) (2007).</td>
</tr>
<tr>
<td></td>
<td>External Dimming (up and down pulses).</td>
</tr>
</tbody>
</table>
MECHANICAL DIMENSIONS

Console mounting order:
A. Make a cut out in the Console (11 125 x 125 4.921 x 4.921)
B. Remove the mounting bracket (2)
C. Unscrew the 4 screws in the frame (3) (one in each corner) and remove the frame.
D. Put the mounting bracket (2) on the cut out and mark the 4 corners for the drill in the Console (11) (The drilling holes diam. depends on thickness and material in the Console.)
E. Use Pan. screws DIN 7981 dia. 2.9 (0.114). Length depends on the Console thickness.
F. Finally put on the frame (3). Make sure that the screwheads correspond with the cut outs in the frame.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Title/Name, designation, material, dimension etc</th>
<th>Article No./Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1</td>
<td>Compact Display</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 2.
Accepted NMEA 0183 Sentences Summary

<table>
<thead>
<tr>
<th>NMEA Sentence</th>
<th>Description</th>
<th>Parameter Name</th>
<th>Screen name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPT</td>
<td>Water Depth in meters</td>
<td>DPT</td>
<td>DEPTH-K, DEPTH-T, DEPTH-S</td>
</tr>
<tr>
<td>DBK</td>
<td>Water Depth below Keel in meters</td>
<td>DBK</td>
<td>DEPTH-K</td>
</tr>
<tr>
<td>DBT</td>
<td>Water Depth below Transducer in meters</td>
<td>DBT</td>
<td>DEPTH-T</td>
</tr>
<tr>
<td>DBS</td>
<td>Water Depth below Surface in meters</td>
<td>DBS</td>
<td>DEPTH-S</td>
</tr>
<tr>
<td>PSKPDPDPT</td>
<td>SKIPPER proprietary depth sentence</td>
<td>PDPT</td>
<td>DEPTH-K, DEPTH-T, DEPTH-S</td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBW</td>
<td>Longitudinal Water Speed</td>
<td>STWWL</td>
<td>STW</td>
</tr>
<tr>
<td></td>
<td>Transverse Water Speed</td>
<td>STWWT</td>
<td>STW</td>
</tr>
<tr>
<td></td>
<td>Transverse Water Speed, Aft</td>
<td>STWWA</td>
<td>STW</td>
</tr>
<tr>
<td></td>
<td>Longitudinal Ground Speed</td>
<td>SOGBL</td>
<td>SOG</td>
</tr>
<tr>
<td></td>
<td>Transverse Ground Speed</td>
<td>SOGBT</td>
<td>SOG</td>
</tr>
<tr>
<td></td>
<td>Transverse Ground Speed, Aft</td>
<td>SOGBA</td>
<td>SOG</td>
</tr>
<tr>
<td>VHW</td>
<td>Speed Through Water in knots, relative</td>
<td>STW-R</td>
<td>STW-R</td>
</tr>
<tr>
<td>VTG</td>
<td>Speed over Ground in knots, relative</td>
<td>SOG-R</td>
<td>SOG-R</td>
</tr>
<tr>
<td>XDR</td>
<td>Water Speed direction</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLW</td>
<td>Water-track Distance since reset</td>
<td>TRIPW</td>
<td>TRIPW</td>
</tr>
<tr>
<td></td>
<td>Water-track Total distance</td>
<td>TOTLW</td>
<td>TOTLW</td>
</tr>
<tr>
<td></td>
<td>Bottom-track Distance since reset</td>
<td>TRIPB</td>
<td>TRIPB</td>
</tr>
<tr>
<td></td>
<td>Bottom-track Total distance</td>
<td>TOTLB</td>
<td>TOTLB</td>
</tr>
<tr>
<td>Heading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHW</td>
<td>Heading, degrees, true</td>
<td>HDW-T</td>
<td>HDG.T</td>
</tr>
<tr>
<td></td>
<td>Heading, degrees, magnetic</td>
<td>HDW-M</td>
<td>HDG.M</td>
</tr>
<tr>
<td>VTG</td>
<td>Heading (Course Over Ground), degrees, true</td>
<td>COG-T</td>
<td>COG.T</td>
</tr>
<tr>
<td></td>
<td>Heading (Course Over Ground), degrees, magnetic</td>
<td>COG-M</td>
<td>COG.M</td>
</tr>
<tr>
<td>THS</td>
<td>Heading, degrees, true</td>
<td>THS</td>
<td>HDG.T</td>
</tr>
<tr>
<td>HDT</td>
<td>Heading, degrees, true</td>
<td>HDT</td>
<td>HDG.T</td>
</tr>
<tr>
<td>HDM</td>
<td>Heading, degrees, magnetic</td>
<td>HDM</td>
<td>HDG.M</td>
</tr>
<tr>
<td>HDG</td>
<td>Heading, degrees, magnetic</td>
<td>HDG</td>
<td>HDG.M</td>
</tr>
<tr>
<td>NMEA Sentence</td>
<td>Description</td>
<td>Parameter Name</td>
<td>Screen name</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Rotation</td>
<td>ROT</td>
<td>Rate of Turn in degrees/minute</td>
<td>ROT</td>
</tr>
<tr>
<td>Pitch and roll</td>
<td>XDR</td>
<td>Pitch</td>
<td>PITCH</td>
</tr>
<tr>
<td></td>
<td>Roll</td>
<td></td>
<td>ROLL</td>
</tr>
<tr>
<td>Wind</td>
<td>MWV</td>
<td>Wind angle, Theoretical (True)</td>
<td>MWVAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind angle, Relative</td>
<td>MWVAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind Speed in knots</td>
<td>MWVNT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind speed in m/s</td>
<td>MWVMT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind speed in Beaufort</td>
<td>MWVBT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind Speed in knots</td>
<td>MWVNR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind speed in m/s</td>
<td>MWVMR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind speed in Beaufort</td>
<td>MWVBR</td>
</tr>
<tr>
<td></td>
<td>VWR</td>
<td>Wind angle, Relative</td>
<td>VWR-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind Speed in knots</td>
<td>VWR-N</td>
</tr>
<tr>
<td></td>
<td>VWT</td>
<td>Wind angle, True</td>
<td>VWT-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind Speed in knots</td>
<td>VWT-N</td>
</tr>
<tr>
<td></td>
<td>MWD</td>
<td>Wind angle, True</td>
<td>MWD-T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind angle, Magnetic</td>
<td>MWD-M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind Speed in knots</td>
<td>MWD-N</td>
</tr>
<tr>
<td>Temp.</td>
<td>MTA, MDA</td>
<td>Air Temperature in degree Celcius</td>
<td>ATEMP</td>
</tr>
<tr>
<td></td>
<td>MTW</td>
<td>Water Temperature in degree Celcius</td>
<td>WTEMP</td>
</tr>
<tr>
<td>Drive</td>
<td>RPM</td>
<td>Revolutions / min</td>
<td>RPM</td>
</tr>
<tr>
<td></td>
<td>RSA</td>
<td>Rudder Sensor Angle</td>
<td>RSA</td>
</tr>
<tr>
<td>Clock/UTC</td>
<td>ZTG, ZDA, GGA, RMC</td>
<td>UTC (hh:mm)</td>
<td>UTC</td>
</tr>
<tr>
<td></td>
<td>ZDA</td>
<td>Local Time (hh:mm)</td>
<td>LOC</td>
</tr>
<tr>
<td></td>
<td>ZTG</td>
<td>Expected Time of Arrival (UTC) (hh:mm)</td>
<td>ETA</td>
</tr>
<tr>
<td>Display dimming</td>
<td>DDC</td>
<td>Display Dimming Control</td>
<td></td>
</tr>
</tbody>
</table>
Detailed Description

Depth:

Depth

$--DPT, x.x, x.x*hh<CR><LF>

- **Offset from transducer, in meters (see Note 1)**
- **Water depth relative to the transducer, in meters**

Depth Below Surface

$--DBS, x.x, f, x.x, M, x.x, F*hh<CR><LF>

- **Water depth relative to the surface, in fathoms**
- **Water depth relative to the surface, in meters**
- **Water depth relative to the surface, in feet**

Depth Below Transducer

$--DBT, x.x, f, x.x, M, x.x, F*hh<CR><LF>

- **Water depth relative to the transducer, in fathoms**
- **Water depth relative to the transducer, in meters**
- **Water depth relative to the transducer, in feet**

Depth Below Keel

$--DBK, x.x, f, x.x, M, x.x, F*hh<CR><LF>

- **Water depth relative to the keel, in fathoms**
- **Water depth relative to the keel, in meters**
- **Water depth relative to the keel, in feet**

SKIPPER Proprietary sentence

$--PSKPDPDPT,x.x,x.x, , , ,c-c*hh<CR><LF>

- **Transducer location (FWD/AFT/PORT/STB)**
- **Offset from transducer, meters (see Note 1)**
- **Water depth relative to transducer, meters**

Note 1: Positive value indicates distance from transducer to water line. Negative value indicates distance from transducer to keel.
Speed:

Dual Ground/Water Speed

$\text{--VBW, x.x, A, x.x, A, x.x, A, x.x, A, x.x, A*hh<CR><LF>}

Status, stern ground speed
\text{A= data valid, V= data invalid}

Stern transverse ground speed, in knots
\text{SOGBA}

Status, stern water speed
\text{A= data valid, V= data invalid}

Stern transverse water speed, in knots
\text{STWWA}

Status, ground speed
\text{A= data valid, V= data invalid}

Transverse ground speed, in knots
\text{SOGBT}

Longitudinal ground speed, in knots
\text{SOGBL}

Status, water speed
\text{A= data valid, V= data invalid}

Transverse water speed, in knots
\text{STWWT}

Longitudinal water speed, in knots
\text{STWWL}

Water Speed and Heading

$\text{--VHW, , , , x.x, N, x.x, K*hh<CR><LF>}

Relative water speed, in km/h
\text{STW-R}

Relative water speed, in knots

Course Over Ground and Ground Speed

$\text{--VTG, , , , x.x, N, x.x, K,*hh<CR><LF>}

Relative ground speed, in km/h
\text{SOG-R}

Relative ground speed, in knots

Speed direction

$\text{VMXDR,A,x.x,D,SPDD*hh<CR><LF>}

Transducer ID must be SPDD

Units of measure, D = degrees

Measurement data for speed direction must be either 0 or 180

Transducer type must be A
(Angular displacement)

Distance:

Dual Ground/Water Speed

$\text{--VLW, x.x, N, x.x, N, x.x, N, x.x, N*hh<CR><LF>}

Ground distance since reset
\text{TRIPB}

Total cumulative ground distance
\text{TOTLB}

Water distance since reset
\text{TRIPW}

Total cumulative water distance
\text{TOTLW}

Note: All distance values must be specified in nautical miles.
Heading:

Water Speed and Heading

\$--VHW, x.x, T, x.x, M, , , ,*hh<CR><LF>

- Heading, degrees magnetic: HDW-M
- Heading, degrees true: HDW-T

Course Over Ground and Ground Speed

\$--VTG, x.x, T, x.x, M, , , ,*hh<CR><LF>

- Course over ground, degrees magnetic: COG-M
- Course over ground, degrees true: COG-T

True Heading and Status

\$--THS, x.x, a*hh<CR><LF>

- Mode indicator (see Note): THS
- Heading, degrees true:

Note: The Mode indicator is ignored

Heading True

\$--HDT, x.x, T*hh<CR><LF>

- Heading, degrees true: HDT

Heading Magnetic

\$--HDM, x.x, M*hh<CR><LF>

- Heading, degrees magnetic: HDM

Heading, Deviation and Variation

\$--HDG, x.x, , , ,*hh<CR><LF>

- Magnetic sensor heading, degrees: HDG

Rotation:

Rate Of Turn

\$--ROT, x.x, A*hh<CR><LF>

- Status: A=data valid, V=data invalid
- Rate of turn (°/min), ”-” = bow turns to port: ROT
Pitch and Roll

Transducer Measurements

\[\text{Transducer ID must be set to ROLL} \]
\[\text{Units of measure, D = degrees} \]
\[\text{Measurement data for Roll} \]
\[\text{Transducer type must be set to A (Angular displacement)} \]
\[\text{Transducer ID must be set to PTCH} \]
\[\text{Units of measure, D = degrees} \]
\[\text{Measurement data for Pitch} \]
\[\text{Transducer type must be set to A (Angular displacement)} \]

Wind:

Wind Speed and Angle

\[\text{Status, A = data valid, V = data invalid} \]
\[\text{Wind speed units,} \]
\[\text{K = km/h} \]
\[\text{M = m/s} \]
\[\text{N = knots} \]
\[\text{Wind speed} \]
\[\text{Reference,} \]
\[\text{R = relative} \]
\[\text{T = true} \]
\[\text{Wind angle, 0° to 359°} \]

Relative Wind Speed and Angle

\[\text{Wind speed in km/h} \]
\[\text{Wind speed in m/s} \]
\[\text{Wind speed in knots} \]
\[\text{Left/right L/R of vessel heading} \]
\[\text{Wind angle relative to the vessel, 0 to 180°} \]

True Wind and Speed Angle

\[\text{Wind speed in km/h} \]
\[\text{Wind speed in m/s} \]
\[\text{Wind speed in knots} \]
\[\text{Left/right L/R of vessel heading} \]
\[\text{Wind angle relative to the vessel, 0 to 180°} \]
Wind:

Wind Direction and Speed

$--MWD, x.x, T, x.x, M, x.x, N, x.x, M*hh<CR><LF>

- Wind speed, m/s \(MWD-N \)
- Wind speed, knots \(MWD-M \)
- Wind direction, 0 to 359 degrees \(MWD-M \)
- Magnetic Wind direction, 0 to 359 degrees True \(MWD-T \)

Temperature:

Air Temperature

$--MTA, x.x, C*hh<CR><LF>

- Temperature, degree C \(ATEMP \)

Meteorological Composite

$--MDA, , , , , , C, *hh<CR><LF>

- Air temperature, degree C \(ATEMP \)

Water Temperature

$--MTW, x.x, C*hh<CR><LF>

- Temperature, degree C \(WTEMP \)

Drive:

Revolutions

$--RPM, , , x.x, x.x, A*hh<CR><LF>

- Status: A=data valid, V=data invalid \(PPTCH \)
- Propeller pitch, % of max, "-"=astern \(RPM \)
- Speed, revolutions/min, "-" counter clockwise \(RPM \)

Rudder Sensor Angle

$--RSA, x.x, A, , hh<CR><LF>

- Status: A=data valid, V=data invalid \(RSA \)
- Rudder sensor \(RSA \)
Clock / UTC

UTC & Time to Destination Waypoint

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$--ZTG, hhmmss.ss, hhmmss.ss,*hh<CR><LF></td>
<td>Time-to-go (max 24 h)</td>
</tr>
<tr>
<td></td>
<td>UTC of observation</td>
</tr>
</tbody>
</table>

Time & Date

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$--ZDA, hhmmss.ss, , , x.x, x.x*hh<CR><LF></td>
<td>Local zone minutes, 00 to +59</td>
</tr>
<tr>
<td></td>
<td>Local zone hours, 00 to +/- 13</td>
</tr>
<tr>
<td></td>
<td>UTC of observation</td>
</tr>
</tbody>
</table>

Global Positioning System Fix Data

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$--GGA, hhmmss.ss, , , , , , , , , , , , ,*hh<CR><LF></td>
<td>UTC of position</td>
</tr>
</tbody>
</table>

Recommended Minimum Specific GNSS Data

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$--RMC, hhmmss.ss, , , , , , , , , , , , ,*hh<CR><LF></td>
<td>UTC of position</td>
</tr>
</tbody>
</table>

Display Dimming:

Display Dimming Control

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$--DDC, a, xx,*hh<CR><LF></td>
<td>Brightness Percentage:</td>
</tr>
<tr>
<td></td>
<td>00 (min) to 99 (max)</td>
</tr>
<tr>
<td></td>
<td>Display Dimming Preset:</td>
</tr>
<tr>
<td></td>
<td>D = Day time setting (max)</td>
</tr>
<tr>
<td></td>
<td>K = Dusk setting</td>
</tr>
<tr>
<td></td>
<td>N = Night time setting</td>
</tr>
<tr>
<td></td>
<td>O = Backlight off setting (min)</td>
</tr>
</tbody>
</table>
Auxillary:

SKIPPER proprietary

$PSKPPCCPNMEA, <Auxillary number>,<Header>,<Data Field number.>,<Type>,
< Status field number >,< Status valid character >,<Text>*hh<CR><LF>

<Auxillary number> The auxillary number for the wanted user defined parameter. Each additional parameter must be defined with an unique auxillary number. Legal values are 1, 2, 3 or 4.

<Header> This character string follows the ’$’-sign in the specified NMEA sentence. Up to 15 characters could be defined here.

<Data field number> Field number for the data to receive within the specified NMEA sentence, starting with 0 after the first field delimiter. Legal values will be limited by the maximum number of characters in a NMEA sentence.

>Type> Data type of the parameter. The following data types are defined:

0: Unsigned value
1: Signed value
2: Depth in meters
3: Speed without arrow and postfix
4: Longitudinal speed with arrow
5: Transverse speed with arrow
6: Speed with knots as postfix
7: Heading with arrow to indicate the direction the bow turns
8: Heading / Direction without arrow
9: Rotation
10: Temperature
11: Percentage

See table of summary of supported data types for user defined messages

>Status field number.> Field number for status within the specified NMEA sentence, starting with 0 after the first field delimiter. Legal values will be limited by the maximum number of characters in a NMEA sentence.

>Status valid character> The valid character for the status field is defined here. The data in the data field will only be valid if the status field contains this specified character. A Null field indicates that the status field is not used and the received parameter data is always valid.

<Text> Character string to be displayed if text (TXT) is selected. Only large english characters are accepted. The string can be up to 5 characters long, but limited to 3 characters for some types, see the description <Type> for limitations.

The text is truncated if more characters are defined. A Null field is interpreted as blank text.
Summary of supported Data Types for User defined messages:

<table>
<thead>
<tr>
<th>Data Type No.</th>
<th>Data Type name</th>
<th>Legal Data Type Range</th>
<th>Screen output</th>
<th>Format / Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>Out of range (screen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Below</td>
<td>Above</td>
<td>Prefix</td>
</tr>
<tr>
<td>0</td>
<td>Unsigned value</td>
<td>-99999.99</td>
<td>99999.99</td>
<td>‘.....’</td>
</tr>
<tr>
<td>1</td>
<td>Signed value</td>
<td>-9999.99</td>
<td>9999.99</td>
<td>‘.....’</td>
</tr>
<tr>
<td>2</td>
<td>Depth in meters</td>
<td>0</td>
<td>9999.99</td>
<td>‘.....’</td>
</tr>
<tr>
<td>3</td>
<td>Speed without arrow and postfix</td>
<td>-99.9</td>
<td>99.9</td>
<td>‘99.9’</td>
</tr>
<tr>
<td>4</td>
<td>Longitudinal speed with arrow</td>
<td>-99.9</td>
<td>99.9</td>
<td>‘99.9’</td>
</tr>
<tr>
<td>5</td>
<td>Transverse speed with arrow</td>
<td>-99.9</td>
<td>99.9</td>
<td>‘99.9’</td>
</tr>
<tr>
<td>6</td>
<td>Speed with knots as postfix</td>
<td>-99.9</td>
<td>99.9</td>
<td>‘99.9’</td>
</tr>
<tr>
<td>7</td>
<td>Heading with arrow to indicate the direction the bow turns</td>
<td>0</td>
<td>360</td>
<td>‘.....’</td>
</tr>
<tr>
<td>8</td>
<td>Heading / Direction without arrow</td>
<td>0</td>
<td>360</td>
<td>‘.....’</td>
</tr>
<tr>
<td>9</td>
<td>Rotation</td>
<td>-999</td>
<td>999</td>
<td>‘.....’</td>
</tr>
<tr>
<td>10</td>
<td>Temperature</td>
<td>-99.99</td>
<td>99.9</td>
<td>‘-99.9’</td>
</tr>
<tr>
<td>11</td>
<td>Percentage</td>
<td>-100</td>
<td>100</td>
<td>‘.....’</td>
</tr>
</tbody>
</table>
APPENDIX 3.
OTHER OPTIONS WITH THE MULTI REPEATER

COMPACT OPTIONS

The Compact Display can be set up for one of the following systems:

<table>
<thead>
<tr>
<th>System</th>
<th>Option</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>Speed Repeater</td>
<td></td>
</tr>
<tr>
<td>E1 (EML124 Compact)</td>
<td>Single Axis EML</td>
<td>With Electronic unit (JB60CD), sensor and cables</td>
</tr>
<tr>
<td>E2 (EML224 Compact)</td>
<td>Dual Axis EML</td>
<td>With Electronic unit (JB60CD), sensor and cables</td>
</tr>
<tr>
<td>EB (EML224 Compact)</td>
<td>Dual Axis EML Backwards</td>
<td>With Electronic unit (JB60CD), sensor and cables</td>
</tr>
<tr>
<td>MR</td>
<td>Multi Repeater</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Multi Repeater Backwards</td>
<td></td>
</tr>
</tbody>
</table>

- **Speed Repeater**: A simple repeater for speed in 1 and 2 axis and trip. Limited functionality.
- **Single Axis EML**: As above plus primary display for speed logs showing longitudinal speed values produced by the sensor.
- **Dual Axis EML**: As above, but showing both longitudinal and transverse speed values produced by the sensor.
- **Dual Axis EML Backwards**: As above, but can be connected to an external switch for showing the speeds in opposite direction.
- **Multi Repeater**: A comprehensive repeater for many of the most common used NMEA messages. Functions also for user defined messages.
- **Multi Repeater Backwards**: As above, but the speeds are shown in opposite direction.

The software for all these systems is stored in the flash memory and the system configuration can be changed using a security code. This code can be obtained from www.skipper.no. By sending an order to SKIPPER together with the systems serial number. (Obtained by opening the code screen in diagnostics). On entering the supplied code number, the system options will be set. Please note that the cabling is different for repeaters and speed logs, so these are not compatible without replacing the back plate.
CHANGING THE SYSTEM/ADDING OPTIONS

The Compact display unit is being developed as a low cost display alternative to full graphics displays already available. Most extra features are available for the Compact and these can be activated using the CODE page in the DIAG menu. On this menu, the systems unique ID is displayed, and the new options can be purchased from the SKIPPER retailer to add extra functions. You will receive a code to be entered into the CODE page by using the arrow buttons.

NOTE: It is important to note that pay option codes are unique for each individual unit and will not work on other units.
APPENDIX 4.

Current

Surface Current speed and direction are calculated by using available information from Speed Through Water and Speed Over Ground. Surface Current is the difference between Speed Through Water and Speed Over Ground indicated by an absolute speed value and a direction towards the current-flow. The direction could be either relative or true.

Speed Through Water is always fetched from the “Longitudinal water speed in knots” and “Transverse water speed in knots” from the VBW NMEA sentence. Speed Over Ground is fetched from “Longitudinal ground speed in knots” and “Transverse ground speed in knots” from the VBW NMEA sentence. If speed over ground is not available from VBW, the speed over ground is fetched from the “Course Over Ground, degree true” and “Relative speed in knots” from the VTG NMEA sentence. Information about True Heading is fetched from either the NMEA sentence THS or HDT prioritized after the following rules:

1. HETHS: THS from Gyro
2. HEHDT: HDT from Gyro
3. GPHS: THS from Global Position System (GPS)
4. GPDHDT: HDT from Global Position System (GPS)
5. HCHTSM: THS from Magnetic Compass
6. HCHDHT: HDT from Magnetic Compass
7. xxTHS: THS from another Talker
8. xxHDT: HDT from another Talker

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR-S</td>
<td>Current Speed in knots</td>
<td>Absolute Current Surface speed</td>
</tr>
<tr>
<td>CURAR</td>
<td>Direction towards Current flow, relative</td>
<td>Speed Through Water from VBW Speed Over Ground from VTG if VBW not valid. Heading information necessary if Speed Over Ground from VBW not available</td>
</tr>
<tr>
<td>CURAT</td>
<td>Direction towards Current flow, true</td>
<td>Speed Through Water from VBW Speed Over Ground from VTG if VBW not valid</td>
</tr>
<tr>
<td>CURBR</td>
<td>Direction towards Current flow, relative</td>
<td>Both Speed Through Water and Speed Over Ground from VBW</td>
</tr>
<tr>
<td>CURBT</td>
<td>Direction towards Current flow, true</td>
<td>Both Speed Through Water and Speed Over Ground from VBW Heading information necessary</td>
</tr>
</tbody>
</table>
A graphical representation of the Surface Current speed and direction is displayed if the following parameters are selected:

- TXT must be selected for the first two parameters.
- Current speed or direction must be selected for next parameter.
- Current speed or direction must be selected (opposite last choice) for last parameter.

The current direction is represented by an arrow on the screen.

When the Bottom Track is not Available.

In cases where bottom track is not “available” and GPS (VTG) and HDT/THS signal is applied, the system will use the GPS as Speed over ground compensation. If bottom track is used the symbol 🛒 is displayed. If GPS is used the symbol 📈 is displayed. The system will always use bottom track, if available.

Getting the Most Out of Your System

The SKIPPER DL 850, Doppler speed log can be connected to a CD401MC-SB Compact repeater, to display:

- The current relative to the Vessel, in Direction and Speed
- The current relative to North, if a Compass or Gyro is connected*

To achieve these parameters, the compact must have an input from the following parameters

- Speed through water (STW), Longitudinal and Transversal (from a Doppler or EML speed log) and either
- Speed over ground (SOG), longitudinal or Transversal (From a Doppler system)
 or
- Speed over ground, Course over ground, heading, from an approved (D) GPS system.*

To have all these options available a multiplexer may be fitted to the NMEA input, and inputs should be made available from the Log, a Gyro, and a GPS

The system will work best when both SOG and STW come from the same source, i.e. the Doppler system, this because the readings are taken at the same time. If the system is used with data from two different sources, i.e. Doppler and GPS, then there will be slight time differences which will affect the instantaneous accuracy.

The system will therefore always prioritise data from the Bottom track over the GPS.
*For parameters requiring more information than just the Doppler log (True values or GPS compensation), a NMEA multiplexer must be provided to enable inputs from GYRO, GPS and Speed log to be input to the single input of the CD401.

Calibration of the DL850 or EML
This system is much more sensitive to wrong calibration of the speed log. Any failure in calibration will show itself as a current that follows the vessel (particularly at higher speeds) whichever direction the vessel sails.
This can be corrected by adding more calibration points at different speeds.

Moving the Sampling Cell
The vessel will always drag some water with it. The Doppler can sample away from the vessel. This can be adjusted by adding more blanking time to the system. This will sample deeper however, there is always a threat of a layer, typically at 15-20m where the current can change direction. Moving the sample area out may cause errors due to mixing of current directions.

To move the sample cell, the user must go into the scope screen (in SW version 4.3.00 + see separate instructions) and hold the hidden button for 2 beeps. The blanking parameter can then be changed (for each depth range) on menu 3.

Jumping Values at Low Speeds.
At very low current speed values, or very low vessel speed values, a small change of speed may result in a large direction change.
I filter has been added to allow a maximum direction change per second.

Averaging (GPS mode)
When the current is using GPS corrections for the vessel speed, the system may show a wrong, (usually larger) current particularly during a course change. To reduce this effect, the averaging on the Doppler and the averaging on the GPS can be adjusted to synchronise.
LOGGING OUTPUT

The CD401 can be set up to produce 2 NMEA outputs:
IIVDR is a set and drift parameter to give the current displayed output, in resultant and direction.
PSKPVDR is a proprietary NMEA sentence, containing both the current direction with both bottom track and GPS correction and also the speed log, GPS and heading information.

It is recommended that if you require help from SKIPPER, that this message is logged and sent together with the enquiry.

Detailed description of the NMEA output sentences:

Speed direction

$IIVDR,x.x,T,x.x,M,x.x,N*hh<CR><LF>

- Surface Current Speed in knots, bottom track (calculated)
- Surface Current Direction, magnetic (not supported)
- Surface Current Direction, degree true, bottom track (calculated)

Speed direction (Proprietary)

$PSKPVDR,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A,x.x,A, *hh<CR><LF> (see NOTE)

1. True heading from HDT
2. True heading from THS
3. Course over ground VTG
4. Speed over ground in knots from VTG
5. Transverse ground speed from VBW
6. Longitudinal ground speed from VBW
7. Transverse water speed from VBW
8. Longitudinal water speed from VBW
9. Surface Current Speed in knots, gps track
10. Surface Current Direction, relative, gps track
11. Surface Current Direction, true, gps track
12. Surface Current Speed in knots, bottom track
13. Surface Current Direction, relative, bottom track
14. Surface Current Direction, true, bottom track

NOTE: A = data valid, V = data invalid
APPENDIX 5.
SENDING THE SYSTEM FOR REPAIR

In case of failure, it may be necessary to send a part of the system back for repair. Make contact with your local dealer for warranty case (list available on www.skipper.no).

On contact with SKIPPER the case will be given a SKIPPER id number. This number should be quoted on all correspondance, and marked clearly on all parts returned.

For normal service/support, please contact SKIPPER Electronics AS on mail support@skipper.no or our local dealer (list available on www.skipper.no).
This page intentionally left blank.